Category Archive Nanoteknoloji

Plastikten Jet Yakıtı Üretimi

Washington State Üniversitesi’nden bir grup araştırmacı, plastik atıkları kullanarak jet yakıtı üretmenin bir yolunu buldu.

Plastik atıkları oldukça ciddi bir problem durumuna geldi. Bilim insanları bu sorunun çözümü için mesai harcıyor. Bu noktada önemli bir araştırma da ABD’deki araştırmacılardan geldi.

Washington State Üniversitesi’nden bilim insanları, plastik atıklarını jet yakıtı olarak kullanmanın bir yolunu buldu. Applied Energy adlı dergide yayımlanan makaleye göre, üniversiteden Hanwu Lei ve çalışma arkadaşları, yüksek sıcaklıkta aktif karbon ile birlikte erittikleri plastik atıkların jet yakıtı üretiminde kullanmanın bir yolunu buldu.

Lei, atık plastiklerin dünya çapında ciddi bir sorun olduğunu belirterek, bu yöntemin plastiklerin geri kazanımında görece daha kolay ve oldukça iyi bir yol olduğunu söylüyor.

Lei ve arkadaşları, düşük yoğunluklu poletilen ve plastik ürün atıklarını kullandı. Su şişeleri, süt şişeleri, plastik poşetler gibi atıklar, bir tüpün içerisindeki aktif karbonun üzerine yerleştirildi. Plasitği eritmenin zor olduğunu söyleyen araştırmacı, kimyasal bağların bozulması için katalizör gerektiğini söyledi.

Karbon katalizör işini tamamladıktan sonra karışımdan ayrıştırılıyor ve geriye kalan plastik işlenmeye devam ediyor. Katalizör, tekrar tekrar kullanılabiliyor.

Çevre Koruma Ajansı’nın verilerine göre ABD’nin çöplüklerinde, 2015 yılında 26 milyon ton plastik bulunuyordu. Çin, ABD’den geri dönüşüm için plastik kabul etmeyi bıraktığından bu yana bu rakam daha da artıyor. Okyanuslar da biriken çok sayıda plastik atık nedeniyle tehlike altında.

Lei, araştırmada kullanılan yöntemin kısa sürede büyük ölçekli olarak uygulanabileceğini söyledi. Ayrıca işlem sonunda, jet yakıtı elde etmek için son ürünün ayrıştırılması geraktiğini söyleyen araştırmacı, bu işlem yapılmaması durumunda elde yalnızca dizel yakıt kalacağını belirtti.

Kaynak : webtekno.com

Nano Malzemeler

Nano teknoloji ünlü fizikçi Richard Feynman tarafından ‘There is Plenty of Room at the Bottom’ (Aşağıda Oldukça Geniş Bir Alan Var) adlı konuşmasına dayanmaktadır (1959). Bu konuşmasında Feynman moleküler boyutlu cihazların yapabileceklerini anlatmış ve nano teknolojinin önemini vurgulamıştır.

İlerleyen zamanlarda (1974) Japon bilim insanı Norio Taniguchi ‘Nano Teknoloji’ terimini yarı iletkenlerin süreçlerini açıklamak için ilk kullanan isim olmuştur.

Ardından Eric Drexler moleküler teknoloji konseptini yaratmış ve nano teknoloji terimini Norio’dan sonra kullanan ikinci bilim insanı olmuştur.

Devam eden yıllarda nano teknoloji büyük bilişim firmaları tarafından kullanılmaya ve teknolojik cihazlar geliştirmeye araç olarak kullanılmıştır. Nano teknoloji kullanılarak IBM tarafından Taramalı Tünelleme Mikroskobu geliştirilmiş (1981) ve nano teknolojinin önlenemez yükselişi başlamıştır.

Nano teknolojinin tarihsel gelişimini özetleyen güzel bir çalışma linkte verilmiştir.

http://www.foresight.org/nano/history.html

nanotechnology, nano teknoloji, nano malzemeler, nano materials, applications of nanotechnology

Nano teknoloji günümüzde tam ve yüksek performanslı ürünler yapmak için geliştirilen araçlar ve teknikleri kullanarak maddeleri aşağıdan yukarıya oluşturmada tahmini gücü ifade etmektedir. Bir nanometre (nm), metrenin milyarda biri, ya da 10-9 katıdır. Tipik karbon-karbon bağ uzunluğu, ya da bir moleküldeki atomların arasındaki boşluk 0.12–0.15 nm arasında değişiklik gösterirken, bir DNA çift sarmalı yaklaşık 2 nm çapa sahiptir.

Nano boyutlu malzemeler günümüzde büyük ilgi görmektedir. ‘Kuantum Boyut Etkisi’ olarak adlandırılan teoriye göre bir malzemenin partikül boyutu ve şekli değiştiği zaman özelliklerinde değişim meydana gelebilmektedir. Bu değişim nano boyutlu malzemelere ilginin artmasını sağlamaktadır. Farklı alanlarda nano boyutlu malzemeler kullanılarak, nano boyutun gizemi çözülmeye çalışılmaktadır.

Nanokar araştırmacıları tarafından nano boyutlu inorganik toz malzemeler partikül boyutu ve şekli kontrol edilerek geliştirilmektedir. Bu süreçler de sahip olunan bilimsel ve fiziksel alt yapı en etkin şekilde kullanılmaya çalışılmaktadır.

Nano Malzemeler Üretim Yöntemleri

Nanokar araştırmacıları nano toz malzemelerini üretmek için birçok yüksek teknolojik üretim metodunu kullanmaktadır. Araştırmacılarımız tarafından kullanılan başlıca üretim metotları aşağıdaki gibidir:

  • Hidrotermal
  • Sol-jel
  • Kontrollü Çöktürme
nanotechnology, nano teknoloji, nano boyut, inorganik toz, inorganic powder technology, applications of nanoparticles

Hidrotermal sentez metodu hakkında birçok tanım bulunmasına rağmen Laudise’nin yapmış olduğu tanım en açıklayıcı olanıdır. Laudis’e göre hidrotermal sentez metodu; çevre veya çevre koşullarına yakın şartlarda sulu çözeltiler içerisinde (yüksek basınç ve sıcaklıklar altında) kristallerin büyütülmesidir.

Sol-jel metodunda ise koloidal süspansiyon oluşturma yoluyla inorganik matrislerin üretimi ve bir grup jeli oluşturmak için solün jelleşmesi ve kurutma sonrası bu jelin xerogel (kuru jel) şekline dönüşmesidir. Elde edilen jeller ardından istenilen tane büyüklüklerinde nano malzemelere dönüştürülmektedir.

Kontrollü çöktürme metodunda ise çökme-çözünme diyagramları kullanılarak nano boyutlu üretilmek istenen malzemeler kontrollü şekilde homojen-heterojen çekirdeklenme yardımıyla üretilmektedir.

Nano Malzemeler Karakterizasyon Metotları

Nano malzemeler birçok farklı metot ile karakterize edilmektedir. Nanokar araştırmacıları tarafından nano malzemelerin karakterizasyon işlemleri 5 ana özellik açısından ele alınmaktadır. Her bir özellik yetkinliğimiz dahilinde farklı karakterizasyon cihazları ile her biri konusunda uzman ekibimiz tarafından gerçekleştirilmektedir.

ÖZELLİKKULLANILAN METOT
Tane boyut ve şekilTaramalı elektron mikroskobu (SEM)
Zeta-Sizer
Yüzey alanı ve por çap-hacim dağılımıBrunauer, Emmet ve Teller metodu (BET)
Kimyasal saflıkX ışınları floresans spektroskopisi (XRF)
Atomik adsorpsiyon spektroskopisi (AAS)
İndüktif olarak eşleştirilmiş kapiler plazma spektrometresi (ICP-OES)
Kristal yapıX ışınları kırınım metodu (XRD)
nano materials, nano malzemeler, nano partikül, mikron boyut, nano particles

Nano Malzemelerin Kullanım Alanları

Gelişen nano teknoloji sayesinde dünya ve gündelik yaşamda kullanılan teknolojik aletler önemli ölçüde gelişmekte ve küçülmektedir. Bugün daha küçük ve efektif elektronik cihazlar kullanabiliyor isek bu nano teknolojinin bize sundukları sayesinde mümkün olmaktadır.

Nano malzemeler birçok endüstriyel alanda etkin şekilde kullanılmaktadır. Bugün kullandığımız birçok cihazda nano teknoloji yaklaşımı benimsenmiş ve nano malzemeler kullanılmıştır.

Nano malzemeler enerji, elektronik, sağlık, savunma sanayi, tekstil, seramik, cam, çevre, gıda v.b. alanlarda kullanılmaktadır. Hayatımızın içerisinde olan nano malzemeler endüstride tekstil alanında kendi kendini temizleyen veya ıslanmayan kumaşlar içerisinde kullanılırken, çevre alanında ise atık suları temizlemek için membran sistemlerinde kullanılmaktadır.

Her endüstri kolu nano malzemeleri keşfetmiş, ürünlerinin yenilikçi ve çığır açan ürünler olması için bu malzemeleri kullanmış-kullanmaktadır.

Her endüstri kolu nano malzemeleri keşfetmiş, ürünlerinin yenilikçi ve çığır açan ürünler olması için bu malzemeleri kullanmış-kullanmaktadır.

Linkler:

www.nanomalzemeler.com

www.nanotechnology.com

Nano Katkılı Polimerler

Masterbatch, plastik sektöründe granüllerden oluşan yarı mamüllere verilen isimdir. Masterbacthler plastik ürünlerin üretiminde hammadde veya taşıyıcı katkılar olarak kullanılmaktadır. Boyutlarının küçük olması sebebiyle hızlıca eriyebilirler ve karışımı kolaylaştırmaktadırlar.

Masterbacthler renklendirici, alev geciktirici, anti-slip, benzeri özellik taşına katkıları polimer ile karıştırılarak masterbarh formunda sektörel üretimler de kullanılmaktadır.

Fakat gelişen  nanoteknoloji ile farklı nano tozlar üretilmekte ve bu tozlar antibakteriyellik, iletkenlik, fiziksel ve kimyasal bir çok özellik barındırmaktadır.

Bu sebeple firmamız  nano tozlar üzerine çalışmakta , polimer ile nano toz karışımlı masterbacth katkılar üretmektedir.

Üretmiş olduğumuz nano toz katkılı masterbacthler

–         Nano Mgo Toz Katkılı,

–         Nano Ag+ Toz Katkılı,

–         Nano Al2O3 Toz Katkılı,

–         Nano Karbon Nanotüp,

–         Nano Grafen Oksit Katkılı,

–         Nano Grafen Toz Katkılı,

–         Nano SiO2 Toz Katkılı,

–         Nano ZnO Toz Katkılı,

ABS, PP, GPPS, HDPE, LDPE, Akrilik, EVA, TPE, TPO, TPU, SAN, PVC, PEBA, PC, PMMA, POM masterbatchler

Kullanım Alanları

Elektrikli Aletler: Buzdolabı, çamaşır makinesi, elektrikli ocak, televizyon ve kamera v.b Kimyasallar ve Yapı Malzemeleri: Plastik boru, sıhhi tesisat, küvet, tek parça tuvalet, kamu hizmetleri ve plastik zeminlerde vb. Elektronik Tıp Alanında : Hastaneler, tıbbi aletler, tek kullanımlık eldiven, vb. Nihai Ürünler : Tıraş makinası, hesap makinası, oyuncak, kırtasiye, mobilya ve plastik bardak vb. Otomotiv Alanında : Kapı kolu, çizgi tahtası, direksiyon simidi ve jokey kutusu, vb. Ambalaj Sanayisin de: Plastik şişeler, su kovaları, streç vb.

Detaylı Bilgi İçin: www.nanomasterbacth.com

Nanomalzemeler

Nanoteknoloji günümüzde çok sık duyulan bir terimdir ve giderek tüm sanayi kollarında ve sağlık alanında kullanımı artmakta ve insan hayatındaki sorunlara çözümler sunmaktadır. Nano kelimesi anlamını yunanca olan ve cüce anlamına gelen ‘nanos’ sözcüğünden almaktadır. Nanoparçacıklar büyüklüğü 1 ve 100 nanometre arasında değişen materyallerdir. Bir nanometre metrenin milyarda biridir (Şekil 1). Nanoteknoloji kısaca boyutları milyarda bir olan malzemelerin fiziksel, kimyasal ve biyolojik yapılarını araştıran ve kullanım alanlarıyla ilgilenen disiplinler arası bir alandır [1]. Nanomalzemeler nanoteknolojinin temel taşlarını oluşturlar ve bu boyutta eşsiz optik, manyetik ve elektriksel özellikler taşırlar. Nanoteknolojiyi bu kadar ilginç kılan unsur, malzemelerin bu boyutta makro dünyadan farklı davranmalarıdır. Makro boyuttan nano boyuta geçerken güç/ ağırlık oranı, iletkenlik, optik ve manyetik özellikleri kayda değer biçimde değişmektedir [4].

Şekil 1. Nano ve Mikro Boyutta Doğada Bulunan Yapılar [5]

Nanoteknolojinin Tarihçesi
Nanomalzemeler ilk olarak 1959’da Richard Feynman tarafından ortaya atılmıştır. Feynman, Kaliforniya Teknoloji Üniversitesi’nde verdiği bir derste ilk defa tek tek atomları ayırmaktan ve kontrol etmekten bahsetmiştir. Bu nedenle Feynman nanoteknolojinin babası olarak isimlendirilmiştir. Feynman’ın düşüncesinden yola çıkarak ilerleyen Norio Taniguchi 1974’te ilk olarak ‘nanoteknoloji’ tanımını yapmıştır. Taniguchi nanoteknolojiyi materyalleri tek atom olarak ayırma, birleştirme veya deforme etme olarak tanımlamıştır. 1981de Eric Drexler yazdığı ‘Molecular Engineering: An approach to the development of general capabilities for molecular manipulation’ isimli makale ile moleküler nanoteknolojinin öncüsü olmuştur. Bu çalışmalar 1981’de Gerd Binnig ve Heinrich Rohrer tarafından bulunan Taramalı Elektron Mikroskobu’nun (TEM) keşfi ile hız kazanmıştır. Bundan beş yıl sonra Atomik Kuvvet Mikroskobunun (AFM) bulunmasıyla tek atom görüntüleri alınmıştır [2].

Boyutlarına Göre Nanomalzemeler
Nanomalzemeler boyutlarına göre dörde ayrılırlar:
• Sıfır Boyutlu Nanomalzemeler (0D),
• Tek Boyutlu Nanomalzemeler (1D),
• İki Boyutlu Nanomalzemeler (2D),
• Üç Boyutlu Nanomalzemeler (3D).

1) Sıfır Boyutlu Nanomalzemeler (0D)
0D nanomalzemeler nanotoz veya nanodispersiyon şeklinde, birbirinden izole halde bulunan malzemelerdir. Günümüzde bu malzemeler çok farklı şekillerde bulunmaktadır ve çeşitli araştırma grupları tarafından sentezlenmektedir. 0D malzemelerden bazıları; homojen parçacık yüzeyleri halinde bulunan kuantum noktalar (quantum dots), nanoküreler (nanospheres), fullerenler, çekirdek (core shell) nanoparçacıkları ve içi boş nanokürelerdir. (hollow nanospheres) Bunların örnekleri Şekil 2’de görülmektedir. 

Şekil 2. Sırayla Çekirdek Nanoparçacığı, İçi Boş Nanoküre, Nanoküre ve Nanotüp Tem Görüntüleri

1) Tek Boyutlu Nanomalzemeler (1D)
1D nanomalzemelere örnekler; nanoçubuklar ve nanotüplerdir. Nanotüpler Iijima tarafından bulunmuştur ve günümüzde giderek önem kazanmaktadır. 1D nanomalzemeler nanoelektronik, nanosistem, nanoaygıtlarda ve nanokompozitlerde, alternatif enerji kaynaklarında ve ulusal güvenlik alanlarında oldukça yaygın olarak kullanılmaktadır. 
2) İki Boyutlu Nanomalzemeler (2D)
2D malzemeler nanometrik boyuttaki film ve kaplamalardır. Günümüzde 2D malzemeler giderek önem kazanmakta ve kullanım alanları artmaktadır. 2D malzemelerin keşfi grafen ile başlamıştır ve sonrasında boron nitrür ve molibden disülfit gibi birçok malzeme bulunmuştur.
3) Üç Boyutlu Nanomalzemeler (3D)
3D malzemeler toz yapılı, lifli, çok katmanlı ve polikristal malzemelerdir. Örnekleri; elmas ve grafittir.

Nanomalzemelerin en çok kullanılan çeşitleri grafen ve karbon nanotüplerdir (CNT). Grafen ilk keşfedilen 2D nanomalzemedir. Grafen karbon atomlarının bal peteği yapısında dizildiği çok katmanlı grafit katmanlarının ayrılmış halidir. Grafitin on altıncı yüzyıldan beri bilinen bir malzeme olmasına rağmen grafen 2004’te Andre Geim’ın araştırmaları sonucu bulunmuştur. Grafenin bu kadar çok tercih edilmesinin nedenleri kendine özgü eşsiz özellikleridir. Grafen oldukça hafif, çelikten yüz kat daha sağlam bir malzemedir, elektriksel iletkenliği çok yüksektir, tek katmanlı olduğunda %97 oranında saydamdır ve %20 oranında esnektir. Grafenin bu kadar sağlam olmasının nedeni karbon karbon çift bağlarından oluşan moleküler yapısıdır ve bu bağ doğadaki en sağlam bağlardan biridir. Bu sayede kurşungeçirmez malzemelerde grafen kullanımına sıkça rastlanmaktadır. Grafen oksit ve farklı atomlar katkılanmış grafen de sıkça savunma sanayisinde ve geri dönüştürülebilir enerji kaynaklarında kullanılmaktadır [3].

Karbon nanotüpler (CNT) grafenin katlanmış ve bir tüp halini almış halidir. Tek duvarlı ve çok duvarlı karbon nanotüpler olarak ayrılmaktadır. CNT’lerin kendilerine özgü kristal yapıları sayesinde birçok farklı özellikleri ve kullanım alanları vardır. CNT’ler çok ince çaplarına karşın oldukça uzun olabilirler. CNT’ler hafif ve esnek, elektriksel iletkenliği yüksek ve mekanik dayanıklılığı oldukça fazla olan malzemelerdir. Duvar yapısındaki karbonların dizilimine göre dayanıklılığında ve iletkenliğinde farklılıklar gözlemlenmektedir. CNT’ler hem sağlık sektöründe hem de alternatif enerji kaynaklarında sıkça kullanılmaktadır. İmplant malzemelerinde, biyosensörlerde, enerji kaynaklarında katalizör olarak ve yapay kas yapımında sağlam ve esnek yapıları CNT’leri en uygun adaylardan biri yapmaktadır. 

 Şekil 3. Grafen, Tek Katmanlı Karbon Nanotüp ve Çok Katmanlı Karbon Nanotüp Molekül Şekilleri

4) Kullanım Alanları
Dünya genelinde 1997 yılında nanoteknolojiye yapılan yatırım 430 milyon Dolar iken 2004 yılında 90 milyar Dolara yükselmiş ve 2020 yılı itibarıyla nanoteknolojinin yıllık 3 trilyon Dolarlık yatırım ile küresel bir endüstri olması öngörülmektedir [6].

Trend teknolojiler arasında hızla etkisini artırmakta olan nanomalzemelerin kulanım alanları (Şekil 4) eksponansiyel olarak artış göstermektedir. Birim ağιrlιk başιna şu andakinden 50 kat daha hafif ve çok daha dayanιklı malzemeler üretilebilecek ve bunlarιn sonucu olarak bu malzemeleri nano ölçekte kuantum bilgi işleme yapan süperbilgisayarlar, çok gizli istihbari ve savunma görevlerinde yer alacak nanorobotlar, beyinsel kapasiteyi artıracak nanohafızalar, kirlilik önleyici nanoparçacιklar olarak tekstil, uzay ve havacιlιk, bilişim, kompozit, elektronik, sağlık gibi çok çeşitli alanlarda kullanmaya başlayacağız [8].

Şekil 4. Nanomalzeme Kullanım Alanları Diyagramı [7]

Sonuç
Nanoteknoloji ve nanomalzemeler (özellikle grafen vb.) Türkiye’nin Sanayide Yüksek Teknoloji Geçiş Programında mutlaka detaylı şekilde ele alınması ve yapılanmaya gidilmesi gereken bir alandır. Gelecekte mesleklerin kayda değer bir bölümü bu alanda oluşacak ve üretim tesisleri bu teknolojiyi ve malzemeleri kullanan endüstrilere dönüşecektir. Bu malzemelerin çevresel ve sağlık faktörleri de ayrıntılı şekilde araştırılmalıdır. Bu malzemelerin ithalinde yaşanabilecek negatif dışsallık sağlayacak unsurları giderecek çalışmalar hayati önem taşıyacaktır.

Kaynaklar: 
[1] A. Alagarasi (2011), Introduction to Nanomaterials, Chapter 1, 76
[2] J. E. Hulla, S. C. Sahu, A. W. Hayes (2011), Nanotechnology History and Future, Human and Experimental Toxicology, 34, 12, 1318-1321
[3] R. M. Balleste, C. G. Novarro, J. G. Herrero, F. Zamora, 2D materials: to graphene and beyond, Nanoscale, 2011, 3, 20-30
[4] Rao, C, N, R, Müller, A, Cheetham, A,K, Nanomaterials Chemistry, 18-31, 2007.

[6] Khan , A,S, Nanotechnology: Ethical and Social Implications, CRC Press, 2-5, 2012.

[8] Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Ulusal Bilim ve Teknoloji Politikaları 2003-2013 Strateji Belgesi, http://www.tubitak.gov.tr/tubitak_content_files/vizyon2023/Vizyon2023_Strateji_Belgesi.pdf ( Erişim Tarihi: 05/06/2018).

Nano Teknoloji ve Tekstil Endüstrisi

Türk ekonomisinin lokomotifi tekstil endüstrisidir.
Son yılların gözde teknolojisi ve çığır açan uygulama alanları ile nano teknolojiyi, tekstil endüstrisinde kullanıp, ülkemizin ekonomisine ve teknolojisine katkı da bulunabilir miyiz?

Acaba, tekstil üreünlerini atomik veya moleküler yapıda inceleyerek, çok daha etkili tekstil ürünleri tasarlayabilir miyiz? 
Bu sorunun cevabı ELBETTE olacaktır.Örneğin, ter tutmayan iç çamaşırları ya da meyve suyu dökülen tişörtlerimizin leke tutmaması, nano teknolojinin tekstil ile birleştirilmesindeki en güzel örneklerindendir.

Tekstil endüstrisi, nano teknoloji kullanarak, çok daha modern ve teknolojik bir döneme adım atmaktadır.Yukarıda verdiğimiz bir kaç tekstil ürünü dışında, nano teknoloji kullanarak bilim kurgu filmlerinde gördüğümüz ürünler de elde edebiliriz.
Örnek vermek gerekirse, kalp atışlarımızı, vücut ısımızı ve kan şeklerimizi düzenli olarak kontrol eden bir tişört üretebilirsek, sağlık ile ilgili kötü bir durumda, tişörtün, kablosuz bir bağlantı ile doktorumuza haberdar etmesi sağlanabilir.Böylece, herhangi bir kritik anda, acil olarak müdahale edilebilir ve birçok hayat kurtarılabilir.Etkileyici değil mi?

Hayal etmek güzeldir.Zaten pek çok teknolojik ürün, hayal sonucu üretilmiyor mu?Nano teknoloji, bu tür ürünlerin tasarlanabilmesi için bize gerekli olan materyalleri sağlamakta.Şu an uçuk gelebilecek bu ürünler, belki 10 15 yıl sonra herkes tarafından kullanılabilecek 🙂

Nano teknoloji, devrimsel bir teknoloji ve henüz anlaşılma seviyesindedir.Nano teknolojinin, tam olarak bilim dallarına girmesi 2025 olarak öngörülüyor ve bu tarihten itibaren, teknolojinin her noktası atomik, moleküler mühendislik altında ele alınacaktır.Tekstil sektörü de, nanometre boyutlardaki ürünleri ile hayatımıza farklı bir tarz getirecektir.
Örnek olarak çorapların üretilmesinde kullanılan ipliğin, gümüş nano parçacıklar ile birleştirilmesi ile, çorağ içerisinde bakteri ve birçok hastalığa yol açan bakterilerin oluşması engellenebilir veya mikropların barınması tamamen durdurulabilir.Buda çorağların kötü kokusunu tamamen kaldırır.Müthiş değil mi?
Ya da, su moleküllerini iten atomik parçacıklar kullanan iplikler ile üretilen giysiler ile ter tutmayan ya da üzerine dökülen sıvıları barındırmasa, hayat daha kolay olmaz mı?
Suyun, 2025 li yıllarda, petrolden değerli olacağı varsayılıyor ise, bu tür ürünler, sudan elektrikten tasarruf etmemizi sağlamaz mı?Hatta çamaşır makinelerini ortadan kaldırmaz mı?

Esnek ve yıkanabilen nano sensörler ve çiplerin, giysi içerisine monte edilmesi ile, giysilerimiz adeta duyacak ve görecektir.Yapay zeka ve diğer bilimsel gelişimler paralelinde, elbiselerimiz çevresel tepkilere cevap verebilecek duruma gelecektir.
Bu örneğin asıl amacı, nano teknolojik ürünlerin, giydiğimiz elbiselere monte edilmesi ile, elbiselere birçok işlev kazandırması ama giyen kişiyi de hiçbir şekilde rahatsız etmemesi.Normal bir tişört ile, mikro çipler monte edilmiş bir tişörtün, kişi üzerinde herhangi bir farka yol açmaması.

SAVUNMA SANAYİNDE NANO TEKNOLOJİ

Son yıllarda yapılan nano teknolojik çalışmalar doğrultusunda, akıllı elbiselerin üretiminde, ümit verici gelişmeler meydana gelmiştir.Kimyasal ve biyolojik etki alanlarını ve insanlara zarar verebilecek diğer maddeler ile dolu bölgeler, elbiseler tarafından fark edilebiliyor.

Nano teknolojinin tekstil ile birleştirilmesi, savunma sanayinde de çığır açan ürünlerin geliştirilmesine neden olmuştur.Yapılan çalışmalar doğrultusunda, savaş alanında yaralanan askerlerin, her türlü bilgilerini ana kumanda merkezine gönderen ve askerin bulunduğu noktaya anında tıbbi ekibi yönlendiren, akıllı elbiseler üretilerek, savunma sanayinde resmen çığır açılmıştır.
Üniformaların, gerektiği noktalarda çok sert bir zırha dönüşebilmesi, savaş alanlarındaki şarapnel parçaların, askere zarar vermesi önlenebiliyor.

SONUÇ

Görüldüğü gibi nano teknolojitekstil alanında kullanılarak, inanılması güç ama bir o kadar da etkileyici ürünleri hayatımza kazandırabiliyor.
Şu an için ütopik görünen pek çok tekstil ürünü, nano teknolojinin daha da geliştirilmesi ile hayata geçirilebilecek, insanların kullanımına sunulabilecek.

Belki birçok hayat kurtarılacak, muhtemelen hayatımız çok daha kolay bir hale gelecek.

Ayrıca, suyun ileride, petrolden daha önemli bir hale geleceği düşünülürse, bugün sürekli yıkanan tekstil ürünleri, kir tutmayan ipliklerle üretilerek, bir daha yıkanması ya da temizlenmesi gerekmeyebilir.Böylece, sırf giysilerin yıkanmasına harcanan tonlarca su, susuzluktan belki de hayatını kaybedecek olan insanlara götürülerek, pek çok hayat kurtarılabilir.

Anlaşılacağı üzere, nano teknoloji gelecek için kilit öneme sahip bir teknolojidir.Nano teknolojiyi anlamalı ve bu teknolojiyi kullanarak ürünler elde edecek duruma ülkece gelmeliyiz.Geleceğin bu çok önemli teknolojisi için, yatırımlarımızı şimdiden yapmalı, gerekli altyapıyı kurmalıyız.

Tekstil konusunda bile, ortaya çıkan ürünler, sizi biraz heyecanlandırdı ise, nano teknolojinin diğer bilimsel dallarda da kullanılması sonucu, neler tasarlanabileceğini, doğaya, insanlığa ne kadar faydalı olabileceğini bir kez de siz düşünün…
Eminim, sizin fikirleriniz de en az bizim örneklerimiz kadar heyecan verici olacaktır.

Sevgilerle..

Tıp ve Nano Teknoloji

Nano teknoloji, daha öncede bahsedildiği gibi maddeleri atomik düzeyde inceleyen bir mühendislik alanıdır. Nanometre, metrenin milyarda biridir ve maddeler üzerinde çok daha esnek işlemler yapılmasına izin verir.

Nano teknoloji, birçok bilim dalında kullanılabilmektedir.Her bilim, kendi dalında küçük moleküler yapılar ile muhakkak uğraşır.Bu da nano teknolojinin, doğal olarak tüm bilimsel alanlarda kullanım alanı olduğunu gösterir.

Elektron mikroskobunun bulunması ile birlikte, artık malzeme üretirken malzemeyi oluşturan elementlerin atomları üzerinde çalışmalar yapılarak (atomların diziliş biçimler değiştirilerek) onlara çeşitli şekiller verilmeye başlanmıştır. Günümüzde nano teknoloji yardımıyla maddeyi oluşturan atomların dizilişinde şekillendirmeler yapılabilmektedir. Nano teknoloji; maddenin nanometre ölçeğinde yani moleküler düzeyde denetlenmesi yoluyla gerçekleştirilen işleme, ölçüm, modelleme ve düzenleme gibi çalışmalarla yeni malzeme, cihaz ve sistemlerin tasarlanması ve üretilmesini konu alan bir teknoloji dalıdır.

Maddeler, nanometre ile ölçülen küçük boyutlarda, normalden daha farklı davranabilir.Normalde ışığı ve elektriği iletmeyen maddeler, nano boyutlarda incelendiğinde bunun tam tersi olduğu gözlenebilmektedir.Normalde, sert olmayan bir madde, nano boyutlarda incelendiğinde elmasdan daha sert davranışlarda bulunabilir.Bu tür gözlemler bize şunu gösteriyor ki, maddeler nano boyutlarda incelendiğinde, doğal davranışlardından çok farklı olabiliyorlar.

Nano teknoloji; sadece üç adet atomdan oluşan küçük bir su molekülünden, hemoglobin gibi oksijen taşıyan bir protein molekülüne ya da DNA zincirine kadar çok geniş bir alanı kapsayan yeni bir teknolojidir.

Tıp alanında nano teknoloji kullanılarak, varolan hastalıklara ya da canlı anatomisi hakkında çok daha derin analizler yapmak mümkündür.Şuan ki hastalıkların birçoğunun hücresel ya da daha küçük moleküller bazda incelenmesi, tıpda bir devrim niteliğindedir.

Nano teknoloji ürünleri, beyin damarlarının içerisine, dişin içine, vb. insan vücudu içerisinde her yere yerleştirilebilir. Nano teknoloji ürünü chipler ve özel donanımlar ile canlı organizmalar uzaktan kontrol edilebilir. İnsan saçı içerisine sığabilen özel kablolarla özel bir iletişim sistemi de kurulabilir.

Nano teknoloji
 sayesinde, çok küçük boyutlarda üretilebilen nano robotlar yapılabilecektir. Günümüzde, nano boyutta fonksiyonel olabilen bu robotları insan kanına verip insan vücudu içerisinde hasarlı organı onarabilecek nano robot teknolojileri ile ilgili proje çalışmaları yapılmaktadır. Beynin kılcal damarları tıkandığında, nano tüpler ile bu tıkanmalar giderilebilecektir. İnsan beyni, içerisinde kimyasallar ve elektronlar bulunan bir yapıda olup beyin hücreleri ararsındaki iletişim nano seviyededir. Beyin damarları içerisinde kan ile hareket eden nano tüpler vasıtasıyla hatasız teşhis ve tedavi yapılabilecektir. Bir tür sinirsel iletişim eksikliğinden kaynaklanan ve genel adı felç olan hastalığa, nano teknolojiyle üretilen yapay kılcal damarlar ile çare bulunacaktır.

Bir süper bilgisayar tarafından kontrol edilen ve vücudumuzun yapay bağışıklık sistemini oluşturacak nano robot ordularının üretilmesiyle nüfuz edilemez bir bağışıklık sistemimiz olacak ve AIDS virüsleri bile size etki edemeyecek. Ana arterlerimizde ve kılcal damarlarımızda gezinen mini robotlar düşünün… Vücudumuza bir defa enjekte edildikten sonra çalışmaya programlanan nano robot sürüleri kan dolaşımı ile istenilen bölgeler gidip hep beraber hasar görmüş bir organı veya dokuyu tamir edebilecek. Tıkanan damarları açabilecek veya hastalıklı hücreleri tahrip edebilecekler. Artık kalp krizi riskinden, enfeksiyona bağlı hastalıklara kadar birçok rahatsızlıktan kurtulacaksınız. Hatta bu mini robotlar vücuda ek bir bağışıklık sistemi bile kazandırabilirler. Hedef hücrelerin özellikleri programlandığında, örneğin vücuda giren herhangi bir virüse saldırabilir ve bünye hastalanmadan virüs istilasını durdurabilirler. Aynı zamanda vücuttaki her bulguyu rapor edip doktorluk da yapabilirler. 

Nano teknoloji, ilaç sektöründe de kullanılmaktadır. Vücuda alınan ilaçlar, normalde vücudun her yerine dağılmakta ve gerçek hedefe gitme olasılığı azalmaktadır. Halbuki nano partiküller ile ilacı doğrudan doğruya gitmesini istediğimiz gerçek hedefe gönderebiliriz. Bunu, hedefi vuran nano kurşuna benzetebiliriz. Böylece ilaç doğrudan doğruya hasta bölgeye veya hasta dokuya gönderilebilecektir. Nano tabancalar ile doğrudan hücreye müdahale edilebilecektir. Mevcut yöntemlerle ilaç alımında, vücudun küçük bir bölgesini tedavi etmek için vücudun başka bir yerini zehirlemek gibi bir risk bulunmaktadır ve bu verimsiz bir yöntemdir. Klasik yöntemle ilaç kullanımında, vücudun kritik iç organları, beyin, karaciğer, böbrek vb. zara görebilmektedir. Halbuki nano teknoloji ile yapılan tedavide, ilaç nnao kapsüllere yükleniyor ve bu nano kapsüller şırınga ile sadece hasta bölgeye veriliyor. Sonra da bo nano kapsüller patlatılıyor ve sadece gerekli yerlere ilaç zerkedildikten sonra da bu zararsız nano kapsüller vücuttan dışarı atılıyor. Gelecekte nano biyolojik ürünler gündeme gelecek, suni organ yapımında nano parçalar kullanılacak, anında teşhis koyabilen sağlık tarama araçları yapılabilecektir.

Pek yakın gelecekte, medikal nanoteknoloji alanında bir devrim yaşanacak diyebiliriz… Örneğin sanal olarak hastalıkların önüne geçilebilecek, moleküler seviyede hücreleriniz tamir edilecek ve yaşlanma yavaşlatılacak. 50 yaşındayken kendinizi 25 yaşında hissedeceksiniz.

Modern Nano fabrikasyon Üretim Teknolojisi

Nano teknoloji, günümüzde emekleme çağında olmasına rağmen, oldukça geniş bir alanda kullanılmaya başlandı.
Bunun en güzel örneklerini, bilgisayar işlemcilerini üreten teknoloji devlerinin 45 nm sınırlarını şimdiden aşmaları gösterir.AMD ve INTEL firmaları, ürettiği hesaplama işlemcilerinde, milyonlarca hatta milyarlarca transistör, ufacık chiplerin içerisine gömülebiliyor.

Buraya kadar herşey normal gibi görünsede, klasik üretim teknolojileri, nano teknolojide çok daha küçük boyutlara inmemizi şuan için imkansız kılıyor.

Geleneksel silikon teknolojisinde kullanılan optik litografi yöntemleri bu boyutları içeren aygıtları yapmaktayetersiz kalacaktır. Bu durumda nanoyapıları üretmek için yeni fabrikasyon teknolojilerinin geliştirilmesi gerekmektedir.Optik litografi temelli silikon teknolojisinin 10-15 yıl içersinde yetersiz kalması ile nanoyapılar içeren nanoelektronik temelli tümleşik entegre devrelerin yapımında elektron demet nanolitografi sistemleri kullanılacaktır.

Elektron demet litografisi yöntemi günümüzde nanoyapıların üretiminde en yaygın olarakkullanılan teknolojidir ve ilerde hızla gelişmesi beklenmektedir. Elektron dalga boyunun 0.1-1nmmertebesinde olması sayesinde elektron demetlerini 1nm boyutlarında odaklamak teorik olarakmümkündür. Bu şekilde odaklanmış elektron demeti ile uygun fotorezist malzemeleri kullanaraknanoyapılar yapmak mümkün olmaktadır. Elektron demet nanolitografi sistemleri nanoelektronikdevrelerin üretimi yanında nanofotonik, nanomanyetizma ve diğer şekillendirilmiş nanoyapılar gerektirentüm nanoteknolojilerde önemli bir temel teknoloji olacaktır. Bu nedenle bu tür temel bir teknolojininülkemizde yer alması çok önem taşımaktadır.

Elektron demet nanolitografi teknolojisi, aynı anda tek bir noktayı yazması nedeni ile tümleşik devreyapma konusunda hızı yetersiz kalmaktadır. Bu duruma çare olarak paralel olarak çalışan bir çok elektrondemetinin kullanılması öngörülmektedir. Elektron demet litografisinin yavaşlığına çözüm olarak nanobaskıteknolojisi önemli bir hız avantajına sahip olacaktır. Bu teknolojide master denilen ve elektrondemet litografisi ve reaktif aşındırma yöntemleri ile oluşturulan bir mekanik maske kullanılacaktır. Bumaster daha sonra polimer bir yüzeye bastırılmak yöntemi ile master maskede yazılı bulunan tümayrıntılar kopya edilecektir. Bu şekilde master maske üzerinde bulunan bütün nanoyapılar hızlı bir şekildekopyalanacak ve tümleşik devre yapımı çok hızlanmış olacaktır.

Bu nanofabrikasyon teknolojileri ile nanoyapılara sahip robotlar veya nanorobotlar yapmak mümkündür.Nanorobotlar belirli bir işlemi veya işlemleri çok hassas olarak tekrar edebilen nanomakinelerdir. Dahabüyük boyutlarda olan robotlar gibi nanorobotlar da ikiye ayrılabilir: bağımsız ve böcek nanorobotlar.Bağımsız nanorobotların üzerinde kendi nanobilgisayarları olduğu için kendi başına hareket etme özelliğivardır. Böcek nanorobot ise merkezi bir bilgisayar tarafından kontrol edilen bir nanorobot sürüsünün tekbir elemanıdır. Nanorobotların özellikle tıpta önemli uygulamaları olacaktır. Örneğin kendini yenileyebilenbir grup böcek nanorobot bir hastalığın aşısı olarak davranabilir. Hastalığı oluşturan mikroorganizmalarıtanıyıp yok etmek ile görevli bu nanorobotlar ile daha önce tedavisi olmayan hastalıklara çözümbulunması beklenmektedir.

Dünyada Nano Teknoloji

Nano teknoloji, dünyada hız kesmeden endüstriyle birleştiriliyor ve katlanarak da artacağa benziyor.Dünya teknoloji devleri, nano teknolojik ürünlerini çeşitli fuarda tanıtıyor ve yeni üretim teknolojileri hakkında çeşitli bilimsel konferanslara katılıyorlar.

Malum, klasik üretim teknikleri, nano teknolojinin geliştirilmesi konusunda pek esnek değil.Nano teknolojinin üretimle birleştirilmesi, teknolojiden çok daha fazla verim alınabilmesi, büyük bir oranda yeni tekniklere de bağlı.

Dünya devleri, maddeleri atomik, moleküler boyutda incelemek ve maddelere yeni yetenekler kazandırmanın uanında, bu teknolojinin üretime nasıl geçirileceği konusunda da büyük bütçeler harcamaktadır.

Amerika Birleşik Devletleri, yaptığı açıklamada 2006 yılında üretilen ürünlerden 200 milyar dolar gelir elde edileceğini ve gelecek on yıl içinde de nano teknoloji kullanılarak üretilen ürünlerden 1 trilyon ABD dolarında küresel bir pazar oluşturacağını açıklamıştı.

ABD, nano teknoloji konusunda üniversitelerinde 40 farklı program açmıştır.

Gelin nano teknoloji konusunda araştırma yapan devletlere yakından göz atalım.

AB – Avrupa Birliği

Avrupa Birliği’nin 1994 ve 1998 yılları arasında yürütmüş olduğu 4. Çerçeve programı kapsamında nanoteknoloji alanında araştırma yapan yaklaşık 80 firma desteklenmiş, 1998 ve 2002 yıllarını kapsayan 5. Çerçeve programı kapsamında ise bu alana yapılan destek miktarı yıllık 45 milyon euro civarında olmuştur. Geniş bir yelpazede yapılan destekler arasında nano-elektronik cihazlar, karbon nanotüpler, bio-sensörler, moleküler tanımlama sistemleri, nano-kompozit malzemeler ve yeni mikroskop teknolojileri öne çıkmaktadır.

Asya

Asya ülkeleri içinde nanoteknolojiye yatırım yapan ülkelerin başında Japonya gelmektedir. Japonya dünyada ABD’den sonra nanoteknoloji alanında en fazla Ar-Ge harcaması yapan ikinci ülke konumundadır. Nanoteknoloji üzerine yapılmakta olan yatırımın her yıl %15 ile %20 oranında artmakta olduğu Japonya’da nanoteknoloji tanımı dünyanın geri kalan ülkelerine oranla çok daha geniş kapsamlıdır. Moleküler seviyede yapılan bir çok araştırma (örnek vermek gerekirse, DNA üzerine yapılan araştırmalar) nanoteknoloji tanımı içerisinde yer almaktadır. Ayrıca NEC ve Sumitomo gibi firmalar carbon nanotüpler alanında çalışmalar yürütmekte, araştırmalar gerçekleştirmektedir.

Asya ülkeleri arasında Japonya’yı takip eden ülkeler arasında Çin ve Kore öne çıkmaktadır. Çin ülkede yürütülen nanoteknoloji odaklı bir çok araştırma ve geliştirme çalışmasını Çin Bilimler Akademisi kanalıyla yürütmektedir. Bu ülkede yürütülen çalışmaların bir çoğu yarı iletken üretme teknikleri ve nanoteknoloji tabanlı elektronik cihazlar üzerine yoğunlaşmaktadır. Araştırma merkezlerine ek olarak nanoteknoloji kullanılarak üretilen ürünlerin ticarileşmesine imkan sağlamak amacıyla çalışan bir çok kuruluş bulunmaktadır.

Kore nanoteknolojinin mikro elektronik uygulamaları alanında yoğunlaşmıştır. Nanoteknoloji çalışmalarının sürüdürüldüğü bir çok üniversite ve araştırma merkezi olduğu gibi Kore’nin en büyük şirketlerinden biri olan Samsung mikro elektronik uygulamalar ve mikro elektromekanik sistemler (MEMS) üzerine araştırmalar yürütmektedir.

Tayvan, Singapur, Tayland Hindistan ve Vietnam nanoteknolojiyi öncelikli alan olarak belirlemiş ve uygun çerçeveyi belirlemek için adımlar atmaktadır.

Amerika Birleşik Devletleri

Amerika Birleşik Devletleri’nde 1999 yılında yayınlanan ulusal nanoteknoloji bildirgesi ile ülkenin nano teknoloji alanındaki öncelikleri belirlenmiş ve bu konuda yapılan Ar-Ge çalışmaları için bütçeler ayrılmıştır. 2000 yılında nanoteknoloji alanında yapılan Ar-Ge çalışmalarına hükümet tarafından sağlanan destek 420 milyon dolar civarında iken 2001 yılı bütçesinde bu alana ayrılan pay yaklaşık 520 milyon dolar’a ulaşmış, 2003 yılı için ise yaklaşık 700 milyon dolar olarak belirlenmiştir.

Aralık 2003 tarihinde Başkan Bush 2005 yılından başlayarak 4 yıl süreyle nanoteknoloji alanında gerçekleştirilen araştırma ve geliştirme projelerinde kullanılmak üzere 3.7 milyar dolar tutarında fon ayrılmasını onaylamıştır. Amerika Birleşik Devletleri’nde yürütülen çalışmalar, nano yapılı malzemeler, moleküler elektronik, nanoparçalar, biosensörler ve bioenformatik, quantum bilgisayarlar, ölçüm ve standart geliştirme çalışmaları, nano ölçekte teori, modelleme ve simulasyon, nano robotlar gibi alanlarda yoğunlaşmıştır. Bu çalışmalar Ticaret Departmanı (DOC), Savunma Departmanı (DOD), Enerji Departmanı (DOE), Ulaşım Departmanı (DOT), NASA, Ulusal Sağlık Enstitüsü (NIH) ve Ulusal Bilim Kurumu (NSF) gibi kurumlar tarafından desteklenmektedir.

ABD’de nanoteknoloji üzerine kurulan firmaların sayısı 2002 yılında bir önceki yıla oranla iki kat artmıştır ve bu eğilimin 2004 yılında da tekrar etmesi beklenmektedir.

Güneş Sistemi’nin sınırında bir nesne keşfedildi.

Bilim insanları, güneş sistemimizin sınırlarında gezinen büyük bir nesne keşfetti.

Bilim insanlarının keşfettiği bu nesne, Güneş Sistemi’nin erken dönemlerine ait olabilir ve gezegenlerin bugünkü formuna nasıl kavuştuğuna açıklık getirebilir.

Solar system, illustration

Bilim insanları, çok uzak olmaları ve radyasyondan etkilenmemiş olmaları dolayısıyla bu nesnenin erken güneş sisteminin kalıntısı olabileceğini düşünüyor. Keşfedilen bu nesne sayesinde araştırmacılar, güneş sisteminin bugünkü formunu kazanmadan önce nasıl göründüğünü tespit edebilir.

Grafen Elektronikte Çığır Açtı

Danimarkalı araştırmacılar, sadece grafene dayalı etkili nano elektronikler üretmenin en büyük zorluklarından birini çözdüler: grafen’i elektriksel özellikleri bozmadan nano ölçekli boyutlara ayırmak. Bu, bu tür yapılar için daha önce elde edilenden daha büyük elektrik akımlarına ulaşmalarını sağlar. Çalışma, gelecekteki elektronik cihazlar için gerekli olan kuantum taşınım özelliklerinin 10 nanometre boyutuna kadar ölçeklenmeden hayatta kalabileceğini göstermektedir.

15 yıl boyunca, bilim adamları nano ölçekli elektronikler üretmek için “mucize malzeme” grafenini kullanmaya çalıştılar. Kağıt üzerinde, grafen bunun için harika olmalı: ultra incedir – aslında sadece bir atom kalınlığındadır ve bu nedenle iki boyutludur, elektrik akımını iletmek için mükemmeldir ve gelecekteki daha hızlı elektronik formları için ideal olmalı ve Daha fazla enerji verimlidir. Ek olarak, grafen sınırsız bir tedarikimiz olan karbon atomlarından oluşur.

Teoride, elektroniği, fotoniği veya sensörleri içinde birçok farklı görevi yerine getirmek için basit bir şekilde küçük desenler çizerek değiştirilebilir, çünkü bu temelde kuantum özelliklerini değiştirir. Şaşırtıcı derecede zor olduğu ortaya çıkan bir “basit” görev, transistörlerin ve optoelektronik cihazların yapılması için çok önemli olan bir bant aralığı oluşturmaktır. Bununla birlikte, grafen sadece bir atom kalınlığından dolayı bütün atomlar önemlidir ve modeldeki küçük düzensizlikler bile özelliklerini tahrip edebilir.

Kaynak: Danimarka Üniversitesi

Mikro boyutta partikül ölçümü

0,02 um – 2000 um Aralığında Parçacık Boyutu Ölçümü

Mikronize toz ve toz alaşımlarının elek analizlerini tayin etmek amacı ile kullanılan yöntemdir.

Nano Boyutta Parçacık Ölçümü

Parçacık Boyutu Ölçümü Akışkan bir sıvı içerisinde yüzen veya asılı kala parçacıklar, içinde bulunduğu çözücü moleküllerin bombardımanı ile rastgele hareketi sonucu brown hareketi yaparlar. Dynamic Light Scattering (DLS) tekniği kullanılarak brown hareketinin hızı ölçülür ve parçacık boyutu ile ilişkilendirilir.

 

Brown hareketinin ölçülebilmesi için akışkanın viskozitesi ve sıcaklığının bilinmesi gerekir. Numune sıcaklığı ile analiz sıcaklığının aynı olması gerekmektedir. Aksi takdirde örnek içinde oluşacak konveksiyon akımı taneciklerin düzensiz olmayan hareketine yol açar. Buda boyut algısını bozar. Partikül boyutu büyüdükçe Brown hareketi yavaşlarken, sıcaklık yükseldikçe Brown hareketi hızlanır. Brown hareketin hızı “difüzyon katsayısı” ile tanımlanır.

DLS ile ölçülen çap değeri bir partikülün bir sıvı içerisinde nasıl hareket ettiğini gösterir. Buna hidrodinamik çap denir. Bu değer, Stokes-Einstein denklemi kullanılarak elde edilir. Elde edilen çap değeri partikülle aynı difüzyon katsayısına sahip kürenin çapıdır. Bu difüzyon katsayısı sadece partikülün esas boyutuna bağlı değildir, aynı zamanda ortamdaki iyonların tipine ve konsantrasyonuna da bağlıdır. Zetapotansiyel ve Mobilite ölçümü Zeta potansiyel, taneler arasındaki itme veya çekme değeri ölçümüdür. Zeta potansiyel ölçümü dağılma mekanizmaları ile ilgili ayrıntılı bilgi verir ve elektrostatik dağılma kontrolünün anahtarıdır.

 

Belli bir yükteki tane, süspansiyon içerisindeki karşı yükteki iyonları çeker, sonuç olarak, yüklü tanenin yüzeyinde güçlü bir bağ yüzeyi oluşur ve daha sonra da yüklü tanenin yüzeyinden dışa doğru yayılmış bir yüzey oluşur. Yayılmış bu yüzey içersinde kayma yüzeyi diye adlandırılan bir sınır bulunur. Yüklü tane ve onun etrafında bulunan iyonların kayma yüzey sınırına kadar olan kısım tek bir parça olarak hareket eder. Bu kayma yüzeyindeki potansiyel zeta potansiyeli olarak isimlendirilir ve hem tanenin yüzey yapısından hem de içinde bulunduğu sıvının içeriğinden etkilenir. Tanelerin polar sıvılar içerisindeki davranışlarını yüzeylerindeki elektrik yükü değil, zeta potansiyel değerleri belirler.

 

Uygulama Alanı

• Polimer ve proteinler (küme ölçümleri)

• Nanoparçacıklar • Emülsiyon kararlılığı (Tane boyutu büyüklüğü ve Zeta potansiyel)

• Pigmentler (Pigment rengi ve tonu tane boyutu büyüklüğüne bağlıdır)

• Atık su arıtımı (Atık suyun içindeki tanelerin topaklandırılma koşulları)

• Seramik prosesleri ( Seramik süspansiyonlarının dağılma kalitesi)

• Sıvı mürekkep ve tonerler

Tıbbi Alet ve Ekipmanları Gümüş Nano Partikülleri İçeren Mikrobisit Kaplama

Nano teknoloji, çok küçük maddelerin teknolojisi olarak bilinmektedir. 1 nanometre, metrenin milyarda biri, diğer bir deyişle, 1 milimetrenin milyonda biri kadardır. Bir hidrojen atomunun çapının 10 katına eşittir.

Bir saç teli ~ 100.000 nanometre

Bakteri ~ 1.000 nanometre

Virüs ~ 100 nanometre

DNA ~ 2,5 nanometre

H atomu ~ 0,1 nanometre

Boyut olarak, 10-100 nanometre aralığında olan ürünler “nano teknolojik ürün” diye sınıflandırılır. Nano Gümüş, 10-100 nanometre boyutunda olan metalik gümüş taneciklerinden oluşur.

 

Nanokompozit-gümüşkolloid sistemi.  Daldırma, püskürtme ilekaplama.

 

Termal sertleştirme.

 

Kullanım Alanları:

Pratik ve metal tümmalzemeler dolayısıyla tümimplantlar kaplanarakimplantlardan kaynaklananenfeksiyonlar önlenmektedir .

 

Özellik ve üstünlükleri:

 

< 1 mikron kaplama kalınlığı.

 

< 100 derece sertleştirme sıcaklığı.

 

  1. aureus , E. coli’e ve çok sayıda bakteriye karşı kanıtlanmış etkinlik.

 

İmplantın yerleştirilme sırasında kaplamada hasar oluşmamakta.  Hayvan deneylerinde çok başarılı sonuçlar

Ahşap Nano Yüzey Kaplamlar

Ahşap yüzeylerde su itici amaçlı kullanılan özel ve çok yüksek kalitede Nano SiO2-kaplamadır. Nano kaplamalar gözeneklerin içine ultra ince bir tabaka halinde penetre olurlar. Kaplanan yüzey, nefes alabilir özellikte mükemmel bir yapısal koruma kazanır. Kontaminasyonun çok büyük bir bölümü yağmur ile yıkanarak temizlenir. Uygulandığı ahşap üzerinde asla renklenme ya da doku farklılığı yaratmaz, tamamen görünmezdir.

Kalem Sertlik Testi

Farklı sertlikteki kalemler, kendi standart ağırlığı olan ve hareket eden parçaya takılır. Bu konumda kalemler kaplama yüzeyine ~45o’lik bir açı oluşturmakta ve hareket eden parça su terazisi ile ayarlanarak zemin ile paralel konumda olmaktadır.

Daha sonra herhangi bir ağırlık uygulamadan, hareket eden parçanın kendi ağırlığı ile kaplama yüzeyinin farklı sertlikteki kalemler ile çizilip çizilmediği incelenir. Gerekli görüldüğü durumlarda mikroskop ile yüzey incelenir.

FT-IR Spektroskopisi Analizleri

FT-IR analizleri Bruker Tensor 27 model cihazı ile gerçekleştirilmektedir. Analiz edilecek olan örneğin katı veya sıvı olmasına göre, pellet tutma aparatı veya ATR (zayıflatılmış toplam yansıma) aparatı ile analizler gerçekleştirilmektedir. FT-IR analizi ile sistem içerisinde bulunan fonksiyonel grupların belirlenmesi yapılmaktadır.

Fotokatalitik Bozunma – Aktivite Testi

Testler için kullanılan Solar Box (Güneş Simülatörü, Erichsen Solar-Box 1500) cihaz yandadır

Mevcut test BS ISO 10678:2010 standardı temel alınarak gerçekleştirilmektedir.
Örnekler istenilen boyutlarda (2,5×4 cm, 5×5 cm, 10×10 cm) kesilerek bir kap içerisine yerleştirilip, üzerlerine derişimi ayarlanmış Rodamin B çözeltileri eklenmektedir. Rodamin B çözeltileri yalnızca gerekli miktarlarda deiyonize su eklenerek hazırlanmaktadır.

Her bir analiz numunesi 24 saat süresince güneş simülatörü (Cihaz adı: Erichsen Solar-Box 1500) içerisinde ışınlandırılmaktadır. Işınlandırmanın ardından her bir kaptan belli miktarda örnek alınıp UV-Visible spektrofotometresinde (Cihaz adı: VarianCary 5000) analiz edilerek ~550 – 560 nm dalgaboyunda gelen absorpsiyon pikinin ölçümü gerçekleştirilmiştir. Her bir test en az üç paralel ile yapılmakta ve sonuçların ortalamaları alınmaktadır.
Her bir örnekte bulunan Rodamin B çözeltisinin 24 saat ışınlandırma ardından ~550-560 nm’de verdiği en yüksek absorpsiyon değerlerinin ortalamaları (ya da her bir pikin altında kalan alanın ortalamaları) değerlendirilerek Rodamin B boyar maddesindeki % azalma miktarı hesaplanmaktadır. Absorpsiyon şiddetindeki azalma, doğrudan fotokatalitik aktivite ile bağlantılıdır.

Asit – Baz Testi

Test numuneleri ve test aparatları, derişimi ayarlanmış HCl / NaOH çözeltisi ile 65 derecede 30 dakika termal dengenin sağlanması için Heraus marka etüvde bekletilmektedir. Daha sonra asit/baz çözeltisi test örneğinin farklı bölgelerine uygulanarak 5 dakika 65 derecede bekletilir ve ardından örnek yüzeyi su ile temizlenir. Böylece bir çevrim tamamlanmış olur. Toplamda beş çevrim yapılmaktadır.

Titanyum dioksit içerikli ürün geliştirme

Tiyanyum dioksit (TiO2) maddesi malzeme üzerine birçok alanda örneğin, boya, hava kirliliği, süperkapasitör, biyosensör ve korozyon gibi çok olumlu etkiler sağlar.

Titanyum dioksit (TiO2) maddesi boyaya aşağıdaki özellikleri kazandırır.

1) Koku giderme

2) Buğulanmayı engelleme

3) Foto-kataliz özelliği nedeni ile kendi kendini temizleme özelliği

4) Çevre dostu (daha az su ve deterjan kullanımı)

TiO2 beyaz ve inorganik bir pigmenttir. Beyaz olmasından dolayı kapatıcı, beyazlaştırıcı, ışığı yansıtıcı özellikler taşır. TiO2 içeren nano-malzemelerde kaplanmış maddeler güneş ışığına karşı direnç ve mikropları barındırmama gibi özellikler gösterir. Ayrıca UV ışınlardan da koruma sağlar.

TiO2 boyanın optik özelliklerini iyileştirir. UV ışınları ile foto-katalizör olarak çalışılarak organik ve inorganik kirlilikleri parçalar, yanma dayanımını arttırır, foto-voltaik hücrelerde UV ışınları ile birlikte iletken hale gelerek, enerji üretilmesini sağlar. En iyi foto-katalizörlerden biri TiO2’dir.

Bu yüzden boyalarda foto-katalitik kaplama da TiO2 nano-malzemesi kullanılır. Yani UV ışınlardan koruyan bir kaplama olarak, foto-katalitik kaplamayı açıklayabiliriz. Aynı zamanda, TiO2 katkı maddesi boyalara katıldığında boyalara yanmazlık özelliği de kazandırmaktadır.

Hava kirliliği uygulamalarında yapılan nano-teknoloji çalışmalarında, genellikle TiO2 ve SiO2 nano-malzemeler kullanılır. Yapılan çalışmalarda Pt/SiO2 ve Pt/TiO2 ortamda kurşunun büyük kısmını, NO’in ise %20-25 oranında ortamdan azaltmıştır.

Grubumuzda yaklaşık 3 yıldır fonksiyonel monomer sentezi, bu organik moleküllerin elektropolimerizasyonları ve karbon nanotüp, fulleren, altın, gümüş veya TiO2 gibi nanopartiküllerle kompozit malzeme yapımı ve bunların süper-kapasitör elektrot malzemesi, korozyon önleyici performansları veya biyosensör gibi alanlarda uygulamaları yapılmaktadır.

In-situ polimerizasyonla sentezlenmiş nano-TiO2 partiküller ile polianilinden hazırlanan kaplamalar polianiline göre daha üstün korozyon direnç gösterir. Ağırlıkça % 4.18 TiO2 içeren polianilin korozyon direnci bakımından polianilinden 100 kattan daha fazla koruma etkinliği gösterir.

Literatürde, PANI/TiO2-SiO2 kompozitleri PANI/TiO2 veya PANI/SiO2’e göre daha yüksek iletkenlik gösterirler. Polianilin/TiO2/SiO2 nanokompozitleri kimyasal oksitlenme polimerizasyon yaklaşımıyla TiO2-SiO2 hibrid malzemelerinden sentezlenir. TiO2’nin foto-katalitik degradasyon etkinliğini

arttırmaya yönelik birçok çalışma metal, ametaller ve uy işlemleri ile gerçekleştirilebilmektedir. Bunun yanı sıra, Koh ve arkadaşları tarafından polianilin nanokompozitin hekzanoik asit ile doplanması in-situ kimyasal polimerizasyonu elde edilmiştir.

PEDOT/TiO2 nanokompozit filmi kloroform-asetonitril çift çözücü kullanımı ile 2 anyonik ve

katyonik sürfaktant bulundurması ile (sodyum dodesilbenzen sülfonat (SDBS) ve tetradesiltrimetil

amonyumbromit kullanımı ile çalışılmıştır. Polianilin / TiO2 nanokompoziti alfa-dekstros kullanımı ve

surfaktant olarak amonyum persülfat yükseltgeyicisi ile elde edilmiştir. Sonuçlar gösteriyor ki, LPG

için maksimum sensing cevabı %90 ağırlıkça %30 PANI/TiO2 nanokompozitinde 400 ppm de halbuki

benzen ve toluen siklohekzan sensing cevabı için farklı ağırlıkça yüzdeler için %30 civarında < =%20

dir. Polianilin ve polipirol fosfomobilik asit (PMA) ve TiO2 doplaması ile nanoboyutta platinyum

ağırlıkça %5 için hibrit nanokompozitlerde çalışılmıştır. Tersinir redoks geçişleri 0.5 M H2SO4 içinde

elde edilmiştir. PANI/TiO2 nanokompozit filmleri anilinin in-situ enzimatik polimerizasyonu ile

sulfonlanmış polistiren ve TiO2 ortamında elde edimiştir. İki farklı morfolojideki polipirol aluminyum

yaprakçık kompozitleri, PPy/Al kompozit ve tel PPy/Al yaprakçık kompozitleri kimyasal oksidatif

polimerizasyon ile sentezlenmiştir. Tel PPy/Al yaprakçık kompozit filmi küresel PPy/Al yaprakçık

kompozit filminden daha iyi anti-korozyon performans sergiler. AA 2024-T3 substrata büyük defectler

halinde koruma sağlar.

Literatürde, Poli[2-metoksi-5-[20-etilendioksi]-p-fenilenvinilen], [6,6]-fenil-C61-butrik asit

metil esteri ve titanyum dioksit nanopartikülü (n-tipi) indiyum kalay oksit substratı üzerine spin

kaplama fiziksel metodu ile kaplanmıştır. Boya sentezlenmiş solar hücreler için TiO2 elektrodu

üretmek için screen-printing pasta kimyasal tekniği ticari P-25 tozundan elde edilmiştir. Diğer bir

çalışmada, 316LN paslanmaz çeliği üzerine PANI/TiO2 nano-kompoziti korozyon önleme çalışması

ağırlıkça oran 0.05 için PANI ve PANI/TiO2 kaplamasından korozyon önleme etkinliğinin daha iyi

olduğu bulunmuştur. Polianilin / TiO2 hibriti elektrikçe iletken pamuk üzerine kaplanmıştır. Elektrik

iletkenliği elektrokimyasal empedans spektroskopisi (EES) kullanımı ile incelenmiştir. TiO2 oranının

10-4 ten 10-2 S/cm değişimine bağlı olarak iletkenlik değeri değişir. Karbon nanotube (KNT), grafen

veya iletken polimer ile uygun silikon waferlar solar hücre uygulamalarına olanak sağlamaktadır. Çok

duvarlı karbon nanotüp (ÇDKNT) TiO2 partikülleri ile Ni üzerine kimyasal buhar biriktirme tekniği

kullanılarak elde edilmiştir. Elektrokimyasal metotlar 0.1 M tetrabutilamonyum perklorat ve asetonitril

çözeltisi içinde kapasitans değeri 146 F g-1 e kadar yüksek değerde elde edilmiştir. Enerji yoğunluğu

ve güç yoğunluğu 21 Whkg-1 ve 10 kWkg-1 olarak sırasıyla elde edilmiştir. Anilinin in-situ

polimerizasyonu ile p-NiO/n-TiO2-polianilin kompoziti sentezlenmiştir. Polianilinin elektrokimyasal

reaktivitisi p-NiO/n-TiO2 partikülleri tarafından elektron hole çiftlerinin etkisinden dolayı

etkilenmiştir. %55 TiO2 içeren nano-kompozit oksijen sensitivitisi %600-700, PANI’den %20-25 daha

yüksek elde edilmiştir. Polipirol ile TiO2’nin nanokompoziti veya poli(3,4-etilendioksitiyofen)

(PEDOT) elektrokimyasal yolla hazırlanmıştır. Polipirol pürüzlü yüzey üzerine yerdeğiştirme özelliği

ile biriktirildi. TiO2 tabakası etkinliği oksidin içinde lityum iyon etkinliğine indirek etkiye sahiptir.

2

Poli(3-hekziltiyofen) (P3HT) polimeri ZnO-TiO2 core-shell nano-rods ışınları temelinde

organik-inorganik solar cell içinde kaplanmaktadır. Greene ve arkadaşları core-shell hücrelerini %0.05

den daha yüksek etkinlikte tekrar üretebilmektedirler. Hücreler havada 1 ay süresince %0.29 etkinlikle

depolanabilmektedirler. Polianilin TiO2 çalışması elektrokimyasal polimerizasyon sırasında colloidal

TiO2 katılımını inceler. Colloidal TiO2 kullanımı ile polianilin matriks içine TiO2 %80.6 miktarında

katılabilmektedir. TiO2 parçacıkları içeren polianilin filminin foto-indirgeme davranışı metanol

çözeltisinde kuvarz kristal mikrobalans tekniği (QCM) kullanılarak çalışılmıştır.

Sonuç olarak, iletken polimerler ve nano-malzemeler materyalleri özellikle TiO2

malzeme içerenler, elektrik, korozif ve mekanik özellikleri bakımından malzemeye

iyileştirmeler sağlar ve literatürde birçok makalede çalışılmıştır.

 

Detaylı Bilgi için: www.titanyumdioksit.com 

Partikül Analiz Hizmeti

Nano ve mikro ölçekte eğitimli kimyagerlerimiz rutin ve ilerlemeli malzeme karakterizasyonu test ve analiz hizmetleri gerçekleştirmektedir; yöntem geliştirme, doğrulama ve transfer protokolleri yürütmek ve ilaç, çevre, petrol-kimya, imalat, kozmetik, diyet takviyeleri, yiyecek ve içecek ve diğerleri de dahil olmak üzere çeşitli sektörlerden müşteriler için karmaşık sorunları çözmekte ve hızlı cevap vermektedir.

 

PARÇACIK BOYUT DAĞILIMI ANALİZLERİ

  • LAZER KIRINIMI
  • ELECTROZONE
  • IŞIK ENGELLEMESİ / PHOTOZONE
  • DİNAMİK IŞIK SAÇILIMI
  • NANOPARÇACIK TAKİP ANALİZİ
  • PARÇACIK BOYUT VE ŞEKİL ANALİZİ
  • ELEK ANALİZLERİ
  • HAVA GEÇİRGENLİĞİ ÇAPI

GAZ ADSORPSİYON VE POROSİMETRİ ANALİZLERİ

  • BET SPESİFİK YÜZEY ALANI
  • MİKROPORE ÖLÇÜMÜ
  • MEZOPOR ÖLÇÜMÜ
  • MERCURY SALDIRI POROSİMETRESİ

KEMİZORPSİYON

BUHAR EMME ANALİZİ

MİKROSKOPİ HİZMETLERİ

  • SEM
  • FOTOMİKROSKOPİYE
  • GÖRÜNTÜ ANALİZİ

NANOTEKNOLOJİ HİZMETLERİ

  • NANOSİGHT NS300
  • MALVERN ZETASİZER NANO
  • NİCOMP 380 / ZLS

TOZ AKIŞKANLIĞI

TERMAL ANALİZLER

  • TERMOGRAVİMETRİK ANALİZ
  • FARKLISAL TARAMA KALORİMETRİSİ

ZETA POTANSİYEL ANALİZİ

  • MALVERN ZETASİZER NANO

YÖNTEM GELİŞTİRME VE DOĞRULAMA

  • METOT GELİŞTİRME
  • YÖNTEM DOĞRULAMA
  • YÖNTEM TRANSFERİ
  • YÖNTEM DOĞRULAMA
  • İSTATİSTİKSEL ANALİZ