Yapay Zeka (YZ) ve Makine Öğrenimi (ML), genellikle insan mantığı ve matematiksel fonksiyonlarla ilişkilendirilir. Ancak YZ dünyasında, en karmaşık sorunlara en zarif çözümleri bulan bir alan var: Evrimsel Algoritmalar (EA).
Bu algoritmalar, doğrudan Charles Darwin’in doğal seçilim ve biyolojik evrim teorisinden ilham alır. Tek bir çözümü doğrudan hesaplamak yerine, doğadaki gibi bir popülasyon oluşturur, bu popülasyonu rekabet ve üreme yoluyla nesiller boyu geliştirir ve böylece optimal çözüme doğru evrimleşir. Bu yazıda, bu büyüleyici YZ tekniğinin nasıl çalıştığını, türlerini ve uygulama alanlarını inceleyeceğiz.
Evrimsel Algoritmalar, yapay bir ortamda biyolojik evrimin temel adımlarını taklit eder:
Algoritma, rastgele oluşturulmuş bir dizi potansiyel çözümle başlar. YZ bağlamında bu çözümler, bir robotun hareket kodları, bir uçak kanadının tasarım parametreleri veya bir Yapay Sinir Ağı’nın ağırlıkları olabilir. Bu ilk çözüm kümesine popülasyon denir. Her bir çözüm ise bir bireydir.
Her bireyin, belirlenen problemi ne kadar iyi çözdüğü ölçülür. Bu ölçüt, Uygunluk Fonksiyonu (Fitness Function) olarak adlandırılır. Örneğin, bir optimizasyon probleminde en iyi çözüm en yüksek uygunluğa sahiptir. Robotun yürüme hızı, modelin tahmin doğruluğu veya bir tasarımın maliyet etkinliği bu fonksiyonla belirlenir.
“En uygun olanın hayatta kalması” prensibi devreye girer. Yüksek uygunluk değerine sahip bireyler (daha başarılı çözümler), bir sonraki neslin ebeveynleri olmak üzere seçilir. Zayıf bireyler ise elenir.
Seçilen ebeveynler, iki temel genetik operatör kullanılarak yeni nesli (çocukları) oluşturur:
Bu adımlar (Uygunluk, Seçilim, Üreme) binlerce hatta milyonlarca nesil boyunca tekrarlanır. Her nesilde popülasyon, giderek daha iyi ve daha uyumlu çözümlere doğru evrimleşir. Süreç, tatmin edici bir sonuç elde edilene veya belirlenen nesil sayısına ulaşılana kadar devam eder.
Evrimsel Hesaplama (Evolutionary Computation) şemsiyesi altında birçok EA türü bulunur:
Evrimsel Algoritmalar, arama alanının çok geniş, çok karmaşık olduğu veya geleneksel matematiksel yöntemlerle çözülemeyecek kadar zor olduğu optimizasyon problemlerinde parlar.
Evrimsel Algoritmalar, YZ’nin geleneksel yöntemlerle takılıp kaldığı “yerel optimum” noktalarını aşarak, global ve beklenmedik mükemmel çözümlere ulaşmasını sağlayan bir köprü görevi görür.
Yorum yapabilmek için giriş yapmalısınız.
Merhaba! Ben Nanokar AI asistaniyim. Size nasil yardimci olabilirim?
Yazar hakkında