Aylık arşiv Nisan 2020

Antibakteriyel Nano Bakır İçerikli Masterbatch

Antibakteriyel nano bakır içerikli masterbatch plastik katkılar, günümüzde korona ile girmiştir. Bilindiği üzere polimer katkılarda gümüş,bakır,çinko tozları kullanıldığında ürünlere antibakteriyellik kazandırıldığı bilinmektedir.

Günümüzde covid-19 salgınından dolayı nano bakır içerikli ürünler tercih sebebi olmuştur. Yapılan araştırmalarda, covid-19 virüsünün bakır yüzeylerde kısa süreli yaşam bulması bakır içerikli ürünlere tercih sebebi oluşturmuştur.

Nano bakır içerikli polimer masterbatch %3 kullanıldığında mikro organizmaların %99,9 öldürdüğü yapılan çalışmalar neticesinde kanıtlanmıştır.

Antimikrobiyal ve Antibakteriyel Nano bakır içerikli katkının yoğun kullanım alanı mevcuttur.

Katkı olarak kullanım oranı % 3 oran yeterli olmaktadır. ABS, PP, GPPS, HDPE, LDPE, Akrilik, EVA, TPE, TPO, TPU, SAN, PVC, PEBA, PC, PMMA, POM daha bir çok Antimikrobiyal Nano Bakır Masterbatch hizmetinizde.

Kullanım Alanları

Elektrikli Aletler: Buzdolabı, çamaşır makinesi, elektrikli ocak, televizyon ve kamera v.b

Kimyasallar ve Yapı Malzemeleri: Plastik boru, sıhhi tesisat, küvet, tek parça tuvalet, kamu hizmetleri ve plastik zeminlerde vb.

Elektronik Tıp Alanında : Hastaneler, tıbbi aletler, tek kullanımlık eldiven, vb.

Nihai Ürünler : Tıraş makinası, hesap makinası, oyuncak, kırtasiye, mobilya ve plastik bardak vb.

Otomotiv Alanında : Kapı kolu, çizgi tahtası, direksiyon simidi ve jokey kutusu, vb.

Ambalaj Sanayisin de: Plastik şişeler, su kovaları, streç vb.

Detaylı Bilgi : 0850 480 62 80 arayabilirsiniz.

Antibakteriyel Astar

Antibakteriyel Astar, gömleklik kumaş kullanılarak elde edilen gömleğin kol manşet ve yakalarında terlemeden dolayı oluşabilecek bakteri üremelerinin önüne geçilmiş olur. Astar gömleğin olmazsa olmaz parçasıdır. Özellikle yaka kısmında terleme çok fazla olmaktadır. Dolayısıyla bakterilerin üremesi için uygun ortam sağlanmış olmaktadır. Antibakteriyel astar ile terleme sonucu ortaya çıkan bakterilerin üremesi önlenmektedir.

Antibakteriyel Astar Nasıl Yapılır?

Detaylı Bilgi : info@nanoteknoloji.org

Akademik Araştırma Siteleri

Yeni araştırma ve ürün geliştirme çalışmalarından yarar sağlayacak ulusal ve uluslar arası araştırma siteleri.

➥ ULUSAL ARAŞTIRMA SİTELERİ

 YÖK Ulusal Tez Merkezi 
https://tez.yok.gov.tr/UlusalTezMerkezi/
Yükseköğretim Kurulu yüksek lisans ve doktora tezleri arşivi

 Dergi Park
http://dergipark.gov.tr/
TÜBİTAK ULAKBİM çatısı altında faaliyet gösteren akademik dergi ve elektronik makale platformu

 MEGEP Modülleri
http://www.megep.meb.gov.tr/?page=moduller
MEB Mesleki ve Teknik Eğitim bireysel öğrenme materyalleri

 TR Dizin
https://trdizin.gov.tr/
TÜBİTAK ULAKBİM veri tabanı

 ULAKBİM
http://ulakbim.tubitak.gov.tr/
Ulusal Akademik Ağ ve Bilgi Merkezi

 TUBA Açık Ders Malzemeleri
http://www.acikders.org.tr/
Türkiye Bilimler Akademisi Ulusal Açık Ders Malzemeleri

 Google Akademik
https://scholar.google.com.tr/
Google tarafından hizmete alınan ve sadece akademik makaleler ve konularda arama yapan bir arama motoru

 Google Books
https://books.google.com.tr/
Google tarafından hizmete alınan dünyanın en kapsamlı tam metin kitap dizini

 Google Gelişmiş Arama
https://www.google.com/advanced_search
Google tarafından hizmete alınan gelişmiş arama motoru. pdf, ppt, doc, xls. dwf. gibi formatlarda arama

 Türk Patent ve Marka Kurumu Yayınları
http://www.turkpatent.gov.tr/TURKPATENT/commonContent/Publications
Türk Patent ve Marka Kurumu Yayınları ve Başvuru Kılavuzları

 EBA Eğitim Bilişim Ağı
http://www.eba.gov.tr/
Milli Eğitim Bakanlığı Eğitim Bilişim Ağı platformu

 Milli Kütüphane
http://www.mkutup.gov.tr/
Ulusal Milli Kütüphane

 Ulusal Toplu Katalog
http://www.toplukatalog.gov.tr/
Ulusal Toplu Katalog

 Metal Dünyası Dergisi Makale Arşivi
http://www.metaldunyasi.com.tr/tr/arsiv/
Metal Dünyası Dergisi Online makale arşivi

 MalzemeBilimi.net
https://malzemebilimi.net/
Metalurji ve Malzeme Mühendisi Fatih Kara’nın Malzeme Bilimi Portalı

 Mühendishane
https://muhendishane.org/
Mühendis Arda Çetin’in Malzeme Bilimi Portalı

 Dökümhane
https://dokumhane.wordpress.com/
Mühendis Arda Çetin’in Döküm Teknolojisi Portalı

➥ ULUSLARARASI ARAŞTIRMA SİTELERİ

 Web of Science
https://login.webofknowledge.com/
Thomson Reuters bilim indeksi ve online veritabanı
Kampüs dışı erişim ayarları için tıklayınız

 Scopus
https://www.scopus.com/
Elsevier bilim indeksi ve online veritabanı
Kampüs dışı erişim ayarları için tıklayınız

 Science Direct
https://www.sciencedirect.com/
2.500’den fazla dergi ve 33.000’den fazla kitaptaki makaleleri kolayca bulun
Kampüs dışı erişim ayarları için tıklayınız

 SpringerLink
https://link.springer.com/
Springer uluslararası veritabanı
Kampüs dışı erişim ayarları için tıklayınız

 Science Direct
https://www.sciencedirect.com/
2.500’den fazla dergi ve 33.000’den fazla kitaptaki makaleleri kolayca bulun
Kampüs dışı erişim ayarları için tıklayınız

 Ithenticate İntihal Araştırma Portalı
http://www.ithenticate.com/
İntihal araştırma sitesi, üyelik ister.
Kampüs dışı erişim ayarları için tıklayınız

 Plagiarisma İntihal Araştırma Portalı
http://plagiarisma.net/tr/
Ücretsiz intihal araştırma portalı
Kampüs dışı erişim ayarları için tıklayınız

 Research Gate
https://www.researchgate.net/
Uluslararası araştırmacı ağı

 Academic Earth
https://academicearth.org/
Dünyaca ünlü üniversitelerin açık ve ücretsiz  video derslerine katılın

 MIT Ücretsiz Online Dersler
https://ocw.mit.edu/index.htm
MIT’nin online derslerine ücretsiz erişin

 BBC Learning English
http://www.bbc.co.uk/learningenglish/
BBC ücretsiz ingilizce dil eğitimi için online dersler

 Intute
http://www.intute.ac.uk/
Bilim, teknoloji, sanat ve sosyal bilimler konusunda 100.000’in üzerinde web tabanlı kaynak

 Perseus Digital Library
http://www.perseus.tufts.edu/hopper/
Perseus Dijital Kütüphanesi, tarih ve arkeoloji hakkında geniş bilgiler içeriyor

 Project Gutenberg
http://www.gutenberg.org/
20.000’in üzerinde kitaba internetten erişmenizi sağlıyor

 A Research Guide
http://www.aresearchguide.com/
Makale yazımı konusunda tüm teknik detayları açıklayan site

 Plotly
https://plot.ly/
Verilerinizi internet üzerinden analiz etmenize, bunlara göre grafik hazırlamanıza yardımcı olan bir uygulama

 Rubriq
http://www.rubriq.com/
Biyoloji ve tıp ile alakalı makaleleriniz için ücretsiz akran değerlendirme hizmeti sunan bir site.

 Authorea
https://www.authorea.com/
Bilimsel makalelerinizi arkadaşlarınız ile beraber hazırlayabileceğiz bir sosyal yazım platformu

 Journal Guide
http://www.journalguide.com/
Akademik çalışmanızın başlığını analiz ederek size en uygun dergiyi bulmanıza yardımcı olan bir yayınlama aracı

 RoMEO
http://www.sherpa.ac.uk/romeo/index.php?la=en&fIDnum=|&mode=simple
Bilimsel makalelerinizin telif hakkını almanızı sağlayan bir araç. Bünyesinde 2200 adet dergi var.

Kaynak Linke tıklayınız.

​Covid-19 Tedavisi ve Nanoteknoloji

Covid-19’un küresel bir salgın olarak ilan edilmesi salgının Merkez üssündeki değişim ve bunun sonucunda ortaya çıkan durum dünyanın hemen hemen tüm dört köşesindeki acil durum olarak bu konuda  araştırmayı zorunlu kılmıştır .

Vaccine Based on Poly-(Lactic-Co-Glycolic) Nanoparticles

Today, finding a vaccine as a global race is regarded the very first priority for most governments and a huge concern for people everywhere. Previously in the case of Middle East respiratory syndrome coronavirus (MERS-CoV), there were calls in order to develop a novel and specific vaccine capable of offering secure and efficient prophylactic measures. More specifically in this issue, a new vaccine based on the application of poly-(lactic-co-glycolic acid) (PLGA) nanoparticles capable of delivering STING agonists and subunit viral antigen was developed. Stimulator of interferon genes (STING) are originally proteins and a new class of cancer drugs regarded as a part of a signaling pathway responsible to regulate the molecules involved in the innate immune response. Based on this nanotechnological vaccination procedure, STING agonists are embedded in capsid-like polymeric nanoparticles with a hallow morphology. These polymeric nanoparticles possess clear local immune activation and pH-responsive release profile as well as reduced systematic reactogenecity. Upon the conjugation of the antigen, the hollow polymeric nanoparticles deliver the similar morphology to the virus in order to facilitate the delivery of the STING and antigens to the immune cells and lymph nodes 1.

Vaccine Based on Spike Protein Nanoparticles

Another vaccine to treat MERS coronavirus is by spike protein nanoparticles. To do so, spike protein nanoparticles and a recombinant adenovirus serotype 5 encoding the MERS-CoV spike gene are allowed to interact with aluminum adjuvant. Later and based on the heterologous prime–boost vaccine strategy, the vaccine is capable of inducing some particular immunoglobulin G against MERS-CoV. However, neutralizing antibodies are induced through homologous immunization as well as heterologous prime–boost immunization with spike protein nanoparticles against MERS-CoV. In this case, the activation of Th cell is done by adenovirus serotype 5 encoding the MERS. As a result, the heterologous prime–boost could lead to immune responses that last longer against the MERS-CoV .

Medical Applications of Nano Materials

Click Image to Find Out More About Nanomaterials in Medicine

Vaccine Based on Virus-like Particle Mimetic Nanovesicles

In this method towards creating a vaccine to fight MERS-CoV, the proteins found in the MERS-CoV structure are expressed in silkworm larvae and Bm5 cells in order to develop potential vaccines. The spike protein of MERS-CoV that originally lacks transmembrane cytoplasmic domains (SΔTM)is purified to be embedded in the hemolymph of silkworm larvae taking the advantage of a bombyxin signal peptide. Later, the purified SΔTM engages in small nanoparticles and spike protein formation. In addition to this, SΔTM can bind to human dipeptidyl peptidase 4 (DPP4). The co-expression of spike proteins is carried out in MERS-CoV membrane protein (M), envelope protein (E) and the Bm5 cells outside the cell forming MERS-Coronavirus-like particles (MERS-CoV-LPs) 3.

Nanomedicine Insight into Chloroquine to Fight COVID-19

The results from a recent clinical cell culture studies demonstrate that chloroquine (the 70-year-old malaria drug) could potentially serve as an efficient therapeutic agent against coronavirus disease 2019 (COVID-19). With its derivative hydroxylchloroquine, chloroquine is known to be an inexpensive and safe drug to be applied as a prophylactic strategy to treat malaria and the common autoimmune diseases. It should be noted that eye damage is the most common side effect of chloroquine in a long term. There is a fact that chloroquine’s anti-viral mechanism is still disputed. Nevertheless, studies show that it has effective therapeutic activity against viruses such as SARS-CoV in and human coronavirus OC43 in cell culture studies. In nanomedicine, chloroquine has been used to investigate the absorption on nanoparticles in cells in order to get a comprehensive view of cells interactions with nanoparticles when chloroquine is present. Such interactions might clarify the mechanisms that are in progress exactly at the early stages before the viral replication takes place. Nanomedicine can particularly provide enough information concerning the alterations in coronavirus (SARS-CoV-2) uptake in cells 4. Figure 1 shows the mechanism through which chloroquine exerts therapeutic impact against COVID-19.

Therapeutic mechanism of Chloroquine against COVID-19

Figure 1. Therapeutic mechanism of Chloroquine against COVID-19

Chemically speaking, chloroquine is regarded a weak alkaline drug that gets encapsulated in organelles with low pH and enclosed membrane and alters their acidity. In mammalian cells, chloroquine treatment results in the pH increase of lysosomes. Through preventing lysosome of fusion, the lysosome interferes the upstream endocytic trafficking with a consecutive phenomenon like a traffic jam to block the transportation from cell membrane. It is speculated that chloroquine’s antiviral impact is through inhibiting viral fusion and replication (which are considered pH dependent), preventing the host receptor protein glycosylation along with the viral envelope glycoprotein 4.

Nanoparticles Endocytosis Inhibition by Chloroquine

Studies have demonstrated that chloroquine inhibits nanoparticles endocytosis using some resident macrophages due chloroquine’s broad spectrum quality. Relevant clinical doses of chloroquine causes monodispersity of synthetic nanoparticles with various sizes ranging from 14 to 2600 nm and shapes in cells and within mice mononuclear phagocyte. They studies concerning the mechanism of chloroquine in treating the COVID-19 reveal that it declines the expression of a protein called phosphatidylinositol binding clathrin assembly (PICALM) which is considered as one of the most common proteins in clathrin-coated pits. As a cargo-selecting clathrin adaptor, PICALM engages in sensing and deriving the membrane curvature regulating the endocytosis rate. PICALM depletion causes the inhibition of clathrin-mediated endocytosis as the responsible predominant pathway to internalize nanoparticles 4. Based on the data from the particle characterization techniques, coronavirus (SARS-CoV-2) size falls in the range of 60 to 140 nm and is spherical morphologically. This means any mechanism to mediate the impact of chloroquine against coronavirus causes a decrease in cells ability to perform clathrin-mediated endocytosis of nanoparticles structure because of suppressing PICALM.


References

1. Lin, L. C. W. et al. Viromimetic STING Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus. Adv. Funct. Mater. 29, 1–15 (2019).

2. Jung, S. Y. et al. Heterologous prime–boost vaccination with adenoviral vector and protein nanoparticles induces both Th1 and Th2 responses against Middle East respiratory syndrome coronavirus. Vaccine 36 , 3468-3476 (2018).

3. Kato, T., Takami, Y., Kumar Deo, V. & Park, E. Y. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J. Biotechnol. 306, 177–184 (2019).

4. Hu, T. Y., Frieman, M. & Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol. 19–21 (2020) doi:10.1038/s41565-020-0674-9.

Yeni virüsler nasıl evrimleşiyor ve yayılıyor?

Çin’in Wuhan kentinde ortaya çıkan Corona (Korona) virüsü ile ilgili dünya alarma geçti. Dünya Sağlık Örgütü’nün acil durum ilan ettiği Corona virüsü, soğuk algınlığından Orta Doğu Solunum Sendromu (MERS) ve Ağır Akut Solunum Sendromu (SARS) gibi daha ciddi hastalıklara kadar çeşitli hastalıklara neden olan büyük bir virüs ailesinin parçası. Virüslerin genel olarak nasıl bir genetik değişim sonrası insana geçebildikleri ve insan için taşıdıkları tehditler konusunda aşı teknolojileri alanında araştırmalarıyla tanınan Boğaziçi Üniversitesi Yaşam Bilimleri Araştırma Merkezi ve Moleküler Biyoloji ve Genetik Bölümü Öğretim Üyesi Prof. Dr. Nesrin Özören’den bilgi aldık. Özören, küresel iklim değişikliğinin, kalabalık kentsel yaşam ve artan insan hareketliliğinin daha önce bilinmeyen yepyeni virüslerin ve dolayısıyla hastalıkların ortaya çıkmasında ve hızlı yayılmasında etkili olduğunu belirtti.

SARS ve MERS’ten sonra şimdi de Corona virüsü dünya gündemine yerleşti. Virüsler genetik değişime nasıl uğruyor? Bu hastalıklarda virüsler nasıl bir evrim izliyor ve virüsler insana hangi yollarla geçiyor?

Normal bir nezle virüsü, Corona veya Influenza (grip) virüs yapılarında kendilerini kodladıkları öğelerden, RNA parçalarından oluşuyor. RNA’nın kendisini kopyalarken çok fazla hata yapma olasılığı var. Virüsün çoğalması için gereken ise konak bir hücre. Virüs konak hücreye yapışıp (burun, boğaz, üst solunum yolu epitel hücreleri) içeri alındığında o konak hücrenin içinde ve metabolizmasını korsan olarak kullanarak kendisini ürettirebiliyor. Virüsün kendisini kopyalayıp, üretilebilmesi için bazı mekanizmalar var. Grip virüsünün sekiz adet RNA parçasından oluşan genomu var ve buna bağlı kodlayan RNA ürettiriyor, kendi enzimlerini ürettiriyor ve sonrasında konak hücrenin zarından tomurcuklanıyor, yeni virüsler ortaya çıkıyor. Bu yeni virüsler yakındaki diğer konak hücrelere yapışarak içeri alındıkları takdirde yeni bir çoğalma döngüsü başlıyor. Corona virüsünün tek parça RNA genomu olsa da hata oranları gene de yüksek.

Aşılarının güvenli bir şekilde uygulandığı ve beş yıl ve üzeri koruyuculuğu bulunan virüsler ise DNA virüsleri. Hepatit B (sarılık yapan) virüsü örneğin, genomu DNA’dan oluşuyor. Bu virüs için de konakçı bir hücreye ihtiyaç var (karaciğer hücresi) DNA kopyalanırken hata yapma riski daha düşük, RNA kopyalanırken ise hata olasılığı daha fazla.

Corona, SARS veya MERS gibi virüslerin kaynağı ise RNA virüsleri olarak biliniyor. Corona virüsünün taşıyıcısının yarasa olduğu belirlendi. Yarasadan yarasaya geçen bir virüs var ve o virüs mutasyona uğruyor. Ancak geçirilen her mutasyon virüsü daha tehlikeli yapmıyor. Tamamen zararsız veya kendini kopyalamayan, yayılması mümkün olmayan olan virüsler de ortaya çıkabilir ancak bunlar hastalık yapamayacağı için bunları gözlemlememiz mümkün değil. Fakat virüs yeni bir özellik sayesinde geçişgenlik kazandıysa çoğalabiliyor ve böylelikle bu virüsleri izleyebiliyoruz. Virüsün konak içinde kopyalanması ve bir sonraki konağa varabilmesi için farklı özelliği olan virüslerin hayatta kaldıklarını görüyoruz. Rastgele mutasyonlardan birinde yarasa hücresine çok iyi yapışabilen virüs artık insan hücresine de iyi tutunma özelliği kazanıyor.

Virüsün her geçtiği canlıdan canlıya veya türden türe kendi sağ kalım mücadelesi söz konusu. Virüs kendisini bir başka canlıda kopyalayabilmek için canlının hücre zarı üzerindeki proteinlerden birine, sanki bir limana varmış gibi, yapışabiliyor. İnsan hücresine yapışabilme özelliği kazandığı zaman orada çoğalmaya başlıyor. Yarasa hücrelerinin üzerinde de benzer konakçı proteinler mevcut. Yarasalar, şempanzeler, fareler ile insan hücre zarı arasında çok büyük farklar yok. İmmünolojik bakımdan virüsün yarasadan insana sıçraması büyük bir eşik. Corona virüsünde virüsün insandan insana geçebildiği de görüldü. Bu da virüsün insan vücudunda sağ kalmayı başarıp kendi kopyalarını yapmayı başardığını gösteriyor.

Virüslerin özellikle kış döneminde ortaya çıkması tesadüf mü?

Virüsler sadece kış mevsiminde ortaya çıkan partiküller değil, yazın da ortaya çıkabiliyorlar ancak kışın popülasyonları daha fazla büyüyor ve insanların bağışıklık yanıtı da daha zayıf düştüğü için hastalık sıklığı artıyor. Virüsün insana geçmesi sonucunda hapşırma, öksürme gibi yollarla virüs yayılmaya başladığında yayacağı partiküller içinde kaç tane virüs olduğuna bakmak gerekiyor. Virüs konakçı hücrelerin içinde kendini çok iyi kopyaladığında bu oran yükseliyor ve bulaşma olasılığı artıyor. Örneğin, bir öksürmeden sonra bir metrelik bir alana dağılan bir milyon sıvı taneciğinin içinde sadece beş partikülde virüs olsun ve sonra başka bir insana bulaşmış olsun. Kişinin bağışıklık sistemi çok güçlüyse bu virüsü yok edeceği için hissetmez ve hastalanmaz bile. Bu kişiler taşıyıcı olabilirler. Nitekim Corona virüsünde hastalık belirtisi taşımayan bir insandan da virüsün bulaşabildiği görüldü. Çin hükümeti geçmişte SARS gibi bir deneyime sahip olduğu için çok büyük önlemler aldı ancak Corona SARS’tan daha az öldürücü bir virüs . Oran olarak bakılacak olursak yüzde 3-5 gibi bir öldürme kapasitesi söz konusu, SARS’ta ise bu çok yüksekti. Elbette önümüzdeki günlerde Corona virüsü ile ilgili gelişmeleri dikkatle izleyip göreceğiz. Ancak mevcut verilerle şunu söylemek mümkün; Corona virüsü çok korkutucu bir virüs değil. Yeni bir virüs çıktığında en önemli sorun çoğu insanın bu yeni virüsle ilk kez karşılaşmasından doğuyor. 65 yaş üstü kişiler, organ nakli olmuş veya kanser hastaları aldıkları kemoterapi veya radyoterapiden dolayı akyuvarlarının sayısının düştüğü, bağışıklık yanıtı düşmüş kişiler için çok riskli grupları oluşturuyor.

Corona virüsünün neden daha önce değil de şimdi çıktığı merak konusu. Bunun nedeni nedir?

Bu soru çok soruluyor ancak kesin bir cevabı bulunamadı. Çin’de asırlardır yaban hayvanları tüketiliyor. Dolayısıyla bugün neden bu virüsün çıkmış olduğu sorusu yanıtlanabilmiş değil. Akla gelen ihtimallerden ilki, iklim değişikliği olabilir. Küresel iklim değişikliği, sıcaklıkların artması insanların bağışıklık sistemlerini ve yarasaların taşıdığı virüsleri de etkiliyor. İkinci etken aşırı kalabalık şehir hayatı ve toplu taşıma gibi havasız ortamlar. Üçüncü ihtimal küresel ölçekte çok hareketli bir insan nüfusu olan dünyamız. Çok fazla seyahat ediyoruz. Eskiden küçük bir köyde hastalık çıktığında köy karantina ile korumaya alınırdı, oysa bugün dünyada milyonlarca turist mevcut. Bu riskler devam ettikçe yeni virüslerin ortaya çıkma olasılıkları da yükseliyor.

Virüsler aslında insanlığa ders de verebilir ama insanlar haklı olarak önce korkuyorlar. Fakat geçmişe baktığımızda çiçek gibi, verem gibi ölümcül sonuçları olan hastalıklar da yaşadık. Çok sayıda insanımızı geçen yüz yılda verem nedeniyle kaybettik. Verem kontrol altına alındı, bugün eskiden olduğu gibi ölümcül ve korku verici değil. Çiçek virüsü ise dünyada hastalık yapamayacak şekilde aşılama sayesinde silindi. 1.Dünya Savaşı sonrasında yaşanan aşırı kıtlık, savaş sonrası çekilen yokluk İspanyol Gribi gibi büyük bir salgını getirdi. Her dönemde yeni bir virüsün çıkabileceğini unutmamak gerekiyor, tedbirli olmamız lazım.

Bir virüs hemen konağına öldürücü etki yapıyorsa o virüsün bulaşma zamanı kalmıyor, mesela Ebola virüsü bulaştığı insanların yarısından fazlasını öldürüyor bir kaç gün içinde, çok kişiye bulaşma fırsatı kalmıyor bu sayede. Geniş toplumlara en çok zararı Corona virüsü gibi belli bir kuluçka süresi ve konağını öldürmeyen virüsler veriyor. İnsanı öldürmüyor ama yayılmış oluyor ve çok daha fazla kişiyi etkiliyor. Ağır bir nezle veya grip olarak seyreden bu hastalığı sağlıklı insanlar atlatabiliyor.

Çin’den ithal edilen ürünlerin virüs taşıma ihtimali var mı?

AIDS virüsü için benzer bir test yapılmıştı. AIDS’li biri ile aynı havuza girebilirsiniz veya AIDS hastasının kullandığı çatal deterjan ve sıcak su ile yıkandıktan sonra virüs kapma olasılığı neredeyse sıfırlanıyor. Bu tür objelerden virüs bulaşması milyonda bir olabilir. Her virüs için dış yüzeylerde (konakçı hücre dışında) sağ kalabilme ve yeni enfeksiyon başlatabilme kapasitesi farklı- bazıları 20-30 dakika, bazıları haftalarca. Kolonya (etanol, %70 ) ile bolca spreyle objeyi silerek sadece Corona değil her virüsten korunursunuz. Çin’den gelen oyuncakları gümrüklerde ultraviyole ışıkla dezenfekte etmek mümkündür.

Peki virüse karşı aşı geliştirmek mümkün mü? Her sene olduğumuz grip aşılarının artık eskisi kadar etkili olmadığı doğru mu?

Daha önce var olmayan bir virüse karşı önceden aşı üretmek mümkün değil. Ancak AIDS virüsü ve grip virüsüne karşı geliştirilen ilaç kombinasyonlarının Corona virüsü ile mücadelede yardımcı olduğu gözleniyor. Bu da gösteriyor ki Corona virüsüne karşı elimiz kolumuz bağlı değil.

Her yıl için yeni grip aşı geliştirirken, üretici şirketler bir istatistiki bir projeksiyon yaparak bir önceki yılın verilerine bakıp bir sonraki yıl görülmesi muhtemel iki veya üç virüse karşı karışık aşı preparatı geliştiriliyor ve o aşı %70 gibi bir koruma sağlayabiliyor belirli bir bölge için tahmin tutarsa. Fakat sizin bölgenizde farklı bir grip virüsüne yakalandığınızda aşılanmış olsanız bile grip olma ihtimaliniz var, ancak gene de aşılanan kişiler nispeten daha hafif atlatabiliyorlar o seneki gribi.

Dünyada şu anda aşı geliştiren ve tüm dünyaya sunan belli başlı şirketler var, bu şirketler size üç, dört çeşit grip aşısı üretebilir ancak bu aşılar belli bir oranda koruma sağlar. Bizim bu noktada kendi kaynaklarımızı kullanarak yerli-milli aşı geliştirmek yönünde çabalarımızı hızlandırmamız şart görünüyor. Ülkemizde böyle bir çalışma olsa sadece iki veya üç tür grip virüsüne karşı kompozit aşı değil de, beş-altı tür grip virüsü suşundan oluşan özgün ve adjuvanlı aşılar geliştirilebilir. Sağlık sistemimize ülke olarak son yıllarda önemli yatırımlar yaptık. Çocuk aşıları alanında son beş yıldır önemli çalışmalar yapılmakta. Dolayısıyla artık kendi aşımızı geliştirmek ve bu yönde teknoloji geliştirmek zorundayız. Hammadde için dünyadaki birkaç şirkete bağımlı olmaktan çıkmamız lazım.

Aksi halde iklim değişikliğinin etkilerini yaşadığımız globalleşen dünyamızda yepyeni virüslerin karşımıza çıkması çok da sürpriz olmayacak.

Kaynak: Boğaziçi Üniversitesi

Nanoteknolojik Maske Koruyucu

Dünya sağlık örgütünün yayınlarına göre enfeksiyonların çok büyük bir kısmı, temas yolu ile yayılmaktadır. Yapılan araştırmalara göre gün boyunca bir insan ortalama 23 kez refleksi olarak elini ağzına götürmektedir. Enfekte olan kişilere veya kişilerin dokunduğu noktalara dokunan sağlıklı insanlar aldıkları virüsü ağız yoluyla vücutlarına aktarmaktadır. Maskeler büyük oranda insanların elini ağzına götürmelerini engellemektedir. Bir diğer enfeksiyon şekli ise damlacık enfeksiyonudur hasta kişiler öksürdüğünde ağızlarından çıkan vücut sıvıları, ortama yayılır 5 mikrondan daha küçük damlacıklar havada askıda kalmaktadır maskeler genel olarak bu damlacıklardan kullanıcıyı korurlar. Korunmanın en etkili yolu ise ellerimizi en az 20 sn boyunca sabun ile yıkamaktır. Bilimsel makaleler COVID-19 virüsünün, Sabun-Su (alkaline pH > 12) ortamda inaktif olduğunu belirtmiştir.