Teknoloji, sanayi devriminden bu yana ivmeli bir ilerleme göstermektedir. İnsanoğlunun ihtiyaçları ve teknolojik gelişmeler, birbirine bağlı bir döngü halinde birbirlerini etkilemekte ve değişime yol açmaktadır. Değişim ve ilerlemeye olan bu ihtiyacın yakın dönemde verdiği bir meyve de “Nanoteknoloji” olmuştur. Maddeyi nano ölçüde inceleyip kullanan nanoteknolojinin temelleri, 1959 yılında Richard Feynman tarafından atılmış, sonrasında önemli ilerlemeler kaydedilmeye başlanmıştır. Nanoteknoloji en çok dikkat çeken buluşlarından biri de 1991’de bulunan karbon nanotüplerdir (KNT). Bu tarihten itibaren karbon nanotüpler, üzerinde en çok çalışma yapılan materyallerden biri haline gelmiştir.
Karbon nanotüp, grafen olarak adlandırılan iki boyutlu (2D) örülü karbon yapının silindir şeklinde sarılmış halidir. Bu tüpün iki ucu küresel silindir yapılarla kapatılmış olabilir. Karbon nanotüplerin çapı birkaç nanometrede sınırlı kalırken uzunluğu 20 nm’ye kadar çıkabilir. Karbon nanotüpler, tüp ekseninin hekzagonal karbon birimlerine bağlı konumuna göre üç farklı yapıya sahip olabilir. Bu yapılar zik zak, tipi, koltuk tipi ve helisel (chiral) tip olarak adlandırılmaktadır. Enine alınan bir kesitte bu dizilim yapıları rahatlıkla fark edilebilir. Grafenin tek katlı olarak sarılmasıyla elde edilen karbon nanotüp yapısı tek duvarlı karbon nanotüp olarak adlandırılmaktadır. Bunun yanında, birden fazla sarım yapılarak elde edilen çift katlı ve çok duvarlı karbon nanotüpler de yaygın olarak görülmekte ve kullanılmaktadır.
Tek duvarlı karbon nanotüp bilinen en basit nanotüp yapısıdır. Çapı 0,4 ve 3 nm arasında değişebilir. Çift ve çok duvarlı karbon nanotüplerin çapı ise duvar sayısına bağlı olarak 100 nm’ye kadar çıkabilir. Karbon nanotüpler hafif ve boşluklu yapıları, kimyasal kararlılıkları, elektrik iletkenlikleri, yüksek esneklik modülüne sahip olmaları ve bilinen en dayanıklı fiberlerden biri olmaları nedeniyle büyük ilgi çekmektedirler. Çok duvarlı karbon nanotüpler birçok açıdan performans düşüşü göstermese de mekanik dayanıklılık konusunda tek duvarlı karbon nanotüplere nazaran düşük bir performans göstermektedir. Bunu temel nedeni, karbon nanotüp katmanlarının sürtünmesizlik özelliği göstermesi ve dolayısıyla birbirleri üzerinden kayarak sıyrılma (pull-out) olarak bilinen özelliğin görülmesidir. Tek duvarlı karbon nanotüplerin gerilme mukavemeti 500 GPa’ya ulaşabilirken çok duvarlı karbon nanotüplerinki yalnızca 10-63 GPa’ya ulaşabilir. Aynı şekilde tek duvarlı karbon nanotüplerin Young modülü yaklaşık 1 TPa olarak raporlanırken çok duvarlı karbon nanotüpler için 0,2 TPa olarak raporlanmıştır. Tek duvarlı karbon nanotüpler çelikten 100 kat daha dayanıklı bir yapıya sahip olmalarına rağmen yoğunlukları çeliğin altıda biri kadardır. Bu özellik özellikle yapısal güçlendirmede dikkat çekmektedir.
Karbon nanotüplerin bir diğer dikkat çeken özelliği ise elektrik iletkenlikleridir. Karbon nanotüp yapısı, grafenin simetrisi ve karbon atomlarının dizilişi iletkenlik özelliğini etkilemektedir. Koltuk tipi nanotüpler metalik özelliklerinden dolayı yüksek elektrik iletkenliği gösterir. Teoride metalik nanotüplerin elektrik gerilim yoğunlukları gümüş ya da bakır gibi metallere kıyasla 1000 kat daha fazladır. Çalışmalara göre tek ve çok duvarlı karbon nanotüpler elektrik iletkenliği açısından kayda değer bir farklılık göstermemektedir.
Karbon nanotüpler, ilgi çekici mekanik ve elektriksel özelliklerinin yanı sıra termal özellikleri ile de dikkat çekmektedir. Yüksek termal iletkenliklerinin temeli fonon bant yapısının bir boyutlu quantizasyonuna dayandırılmaktadır. Bir adet çok duvarlı karbon nanotüpün oda sıcaklığındaki termal iletkenliği 3000 W/K olarak raporlanmıştır. Bu değer grafitin termal iletkenliğinden yüksek olmasıyla dikkat çeker. Grup halinde bulunan çok duvarlı karbon nanotüplerin termal iletkenliğinin ise çok daha düşük olduğu görülmüştür. Tek duvarlı karbon nanotüplerin termal iletkenliği de çok duvarlı karbon nanotüplerin termal iletkenliğinden daha düşüktür. Karbon nanotüplerin termal iletkenliği nanoyapıların çap ve uzunluk, morfoloji ve yapısal kusurlardan etkilenmektedir.
Saf karbon nanotüpler kovalent bağlı karbon atomlarından oluşup kimyasal kararlılık göstermektedir. Yani, karbon nanotüpler gruplar halinde bulunup normal şartlar altında diğer moleküllerle etkileşime kolayca geçmezler. Bu yüzden, farklı yüzey özellikleri gösteren fonksiyonlandırılmış karbon nanotüpler günümüzde nanoteknoloji çalışmalarının ilgi odağı haline gelmiştir. Uygulanan kimyasal ve fiziksel değişimler, karbon nanotüplerin işlevselliklerini arttırıp kullanım alanlarını genişletmiştir. En yaygın olarak kullanılan yöntemlerden biri karbon nanotüp yüzeylerini oksijen içeren organik moleküller ile modifiye etmektir. Genellikle asit işlemler sonucu elde edilen bu fonksiyonlandırılmış karbon nanotüpler yüzeylerinde karboksil karboksil (-COOH) veya hidroksil (–OH) grupları bulundurur. Bu fonksiyonel gruplar, karbon nanotüplerin suda çözünebilme özelliklerini arttırır ve diğer fonksiyonel grupların bağlanabilmesi için aktif alanlar oluştururlar. COOH grubu içeren karbon nanotüpler birçok organik madde için yüksek absorbe kapasitesi gösterirler. OH grubu içeren karbon nanotüplerinse karbon ve OH grupları arasındaki elektron alışverişinden dolayı daha yüksek elektronik iletkenlik gösterdiği belirtilir. En sık kullanılan modifikasyon grupları –COOH ve –OH gibi küçük organik moleküller olsa da, araştırmacılar yakın zamanda karbon nanotüp yüzeylerini DNA, polimer ve enzimler gibi daha kompleks organik bileşiklerle ve inorganik moleküllerle de modifiye etmeye başlamıştır. Polimer / karbon nanotüp kompozitleri özellikle organik moleküllere duyarlılıkları ve farklı özellikleriyle dikkat çekmektedir.
Saf ve fonksiyonlandırılmış karbon nanotüplerin gelişmiş özellikleri birçok uygulama alanında ilgi odağı haline gelmektedir. Yüksek yüzey alanı, elektriksel özellikleri, güçlü mekanik yapıları ve kimyasal özellikleri; elektronik, enerji ve sensör uygulamalarında, katkı maddesi olarak yapısal malzemelerde, kimyasal sensörler ve medikal uygulamalarda kullanılmaktadır.
Karbon nanotüplerin benzersiz yapısı ve okside edilmiş uç kısımları, bu nano yapıları elektron yayılımına uygun hale getirmektedir. Karbon nanotüplerin bu eşsiz özelliği elektronik aletlerde alan yayılım kaynağı olarak kullanılabilir. Bilgisayar ve televizyon ekranı gibi elektronik parçaların, yoğun ışık kaynaklarının ve X-ray kaynaklarının üretiminde ve ya elektron kaynağı katotlarda karbon nanotüplerin bu özelliğinden yararlanılmaktadır.
Karbon nanotüplerin yüksek elektrik iletkenliği ve yüzey alanları, elektrokimyasal cihazların elektrik iletkenliğini ve kapasitelerini attırmak için oldukça uygundur. Karbon nanotüp bazlı kapasitör ve süper kapasitörler, yüksek performans ve yüksek enerji dopalaması gerektiren cihazlarda kullanılır. Bu cihazlar genelde çok duvarlı karbon nanotüplerden yararlansa da bazı çalışmalar karbon nanotüp / polimer kompozitlerinin de yüksek performanslar gösterebileceğini ortaya koymuştur. Yüksek enerji yoğunluklu bu kapasitörler elektrikli araçlarda hızlı ivmelenme ve enerji dopalama sistemlerinde kullanılabilir. Karbon nanotüplerin yüksek elektrik iletkenliği, kapasitörlerin yanı sıra aktüatörlerde de kullanılmaktadır. Aktüatörler elektronik cihazlarda yaygın olarak görülen fakat yüksek ısılarda düşük performans göstermeleri nedeniyle kullanımı sınırlanan elektronik parçalardır. Araştırmacılar, yüksek ısı probleminin önüne geçebilmek amacıyla karbon anotüp bazlı aktüatörler geliştirmeyi amaçlamaktadır. Bu aktüatörlerin 350°C üzerindeki sıcaklıklarda bile düşük akımda çalışabilmesi elektronik cihazlar açısından heyecan verici bir gelişmedir.
Güneş enerjisi günümüzün en çok umut vaat eden alternatif enerji kaynaklarından biri olarak gösteriliyor. Ne yazık ki günümüzün solar enerji teknolojileri, enerji ihtiyaçlarını karşılamakta yetersiz kalmakta ve güneş enerjisinden etkin olarak yararlanamamaktadır. Bu problemlerin üstesinden gelmek amacıyla araştırmacılar, farklı materyaller kullanarak güneş pillerini kullanışlı hale getirmeye çalışmaktadır. Karbon nanotüpler de bu amaçla solar enerji sistemlerine dahil edilebilir. Karbon nanotüpler termal, elektriksel ve mekanik özellikleri sayesinde solar hücrelerin verimliliğini arttırarak yüksek performans sağlamakta kullanılabilirler. Yarı iletken karbon nanotüplerin kullanılmasıyla foton emilimi arttırılarak yüksek fotoakımlar elde edilir ve yararlanılan güneş spektrumunun kapsamı genişletilebilir. Thin film, dye sensitized, ve üç boyutlu güneş pili teknolojileri, karbon nanotüplerin bu özelliklerinden yararlanmaktadır.
Li-ion Piller
Karbon nanotüplerin enerji alanındaki bir başka uygulaması da Li-ion pillerdir. Li-ion piller günümüzde birçok elektronik alette hali hazırda kullanılmaktadır. Ayrıca çalışmalara göre bu piller gelecek teknolojik gelişmelerinde temelinde yatmaktadır ve elektrikli araçların geliştirilmesinde kilit bir role sahiptir. Bu nedenle Li-ion pil teknolojisinin geliştirilmesi önemli bir araştırma konusu haline gelmiştir. Karbon nanotüpler hafif yapıları, geniş yüzey alanları, termal özellikleri, kimyasal özellikleri ve yüksek elektrik iletkenlikleriyle Li-ion pillerde kullanıma uygundur. Karbon nanotüpler lityum iyonlarının aktarımı için uygun nano hatlar oluşturarak metalin verimliliğinin düşmesini engeller ve elektrokimyasal reaksiyonların gerçekleşmesi için destekleyici bir ortam oluşturur. Böylece, pil ömrü ve enerji depolama kapasitesi iyileştirilebilir. Ne kadar gelecek vaat eden sonuçlar ortaya atılmış olsa da, karbon nanotüp içerek Li-ion pil teknolojisi elbette geliştirilmesi gereken ve limitleyici etmenlerin çözümlenmesi gereken bir teknolojidir.
Sensörler günümüzde yaygın olarak yararlanılan cihazlardan biridir. Biyomoleküllerin, organik ve inorganik maddelerin tespit edilmesinde kullanılan sensörlerin en önemli özellikleri seçicilik ve hassaslıktır. Yüksek seçicilik ve hassaslık gösteren sensörler, eser miktardaki maddeleri bile tespit edebilir; daha küçük alanlar kaplayarak pratiklik açısından avantaj sağlayabilirler. Karbon nanotüpler geniş yüzey alanları ve yüksek absorbe kapasiteleriyle hassaslık sağlarken, yüzeylerine bağlanan fonksiyonel gruplar sayesinde seçicilik gösterirler. Karbon nanotüplerin bu ilgi çekici özelliklerinden biyosensörlerde ve kimyasal sensörlerde yararlanılmaktadır. NH3, H2O, CO2 ve CO gibi çevre için önem arz eden moleküllerin tespiti için dizayn edilen kimyasal sensörler, karbon nanotüpler kullanılarak daha küçük boyutlarda üretilebilir ve yüksek hassaslık göstererek çok az miktardaki moleküllerin bile tespit edilmesini sağlayabilirler. Karbon nanotüplerin DNA, protein ve ya enzimlerle bir arada kullanıldığı Kompozit materyaller özellikle biyosensör uygulamalarında dikkat çekmektedir.
Endüstride sıklıkla kullanılan gazların ve geleceğin enerji kaynağı olarak gösterilen hidrojenin verimli bir biçimde depolanması en çok araştırılan konulardan biridir. Bu gazların sıkıştırılarak depolanması ve taşınması birçok risk içermekte ve bu yüzden dikkatli uygulamalar gerektirmektedir. Depolama teknolojilerinin geliştirilmesi, bu gazların hem güvenli bir biçimde depolanması hem de kontrollü bir biçimde kullanılabilmesi için önemlidir. Karbon nanotüplerin boşluklu yapısı ve yüksek hacim / yüzey alanı oranı, bu maddeyi gaz depolama teknolojileri için uygun bir aday yapmaktadır. Üstelik, kimyasal yöntemlerle modifiye edilen karbon nanotüpler yüksek absorbe özelliği göstererek gaz moleküllerini verimli bir biçimde boşluklu yapısında hapsedebilir edebilir. Karbon nanotüplerin NH3, N2, SF6, H2, Ar gibi gazların depolanmasında kullanılabileceği birçok çalışma tarafından gösterilmiştir.
Karbon nanotüplerin güçlü mekanik özellikleri ve termal iletkenlikleri farklı maddelerin özelliklerini iyileştirmek için kullanılabilir. Bu amaçla karbon nanotüpler, polimerik ve seramik materyallerin içinde katkı maddesi olarak kullanılmaktadır. Çalışmalara göre, tek ve çok duvarlı karbon nanotüpler seramik ve beton gibi yapı malzemelerinde güçlendirme katkı maddesi olarak kullanıldığında bu maddelerin mekanik özelliklerin ve dayanıklılığı artmıştır. Üstelik, karbon nanotüplerin hafif yapısı nedeniyle yapı malzemelerinde kayda değer bir ağırlaşma görülmemektedir. Karbon nanotüpler, polimer matrikslere katkı maddesi olarak dahil edildiğinde hem polimerlerin özgül çekme katsayısını ve akma mukavemetini hem de termal özelliklerini iyileştirmiştir. Bu polimer fiberler tekstilden uzay uygulamalarına kadar birçok farklı alanda kullanılabilir.
Karbon nanotüplerin nanoteknoloji dünyasında boy göstermesiyle birlikte ortaya birçok üretim yöntemi atılmıştır. Daha saf ürünler elde edebilmek, fonksiyonlandırılmış nanotüplerin üretmek ve toplu üretime uygun yöntemler geliştirmek adına birçok çalışmalar yapılmıştır. Bugün birçok çalışmada kullanılan nanotüpler kullanım amaçlarına göre katı ve ya gaz halindeki karbondan üretilebilmektedir. Katı karbondan nanotüp üretimi sağlayan yöntemler lazerle aşındırma yöntemi, ark boşaltma yöntemi ve solar fırın yöntemi olarak sıralanabilir. Gaz halindeki karbonu hammadde olarak kullanan yöntemler ise kimyasal buhar çökeltme (CVD), ısıl kimyasal buhar çökeltme (thermal-CVD), plazmayla güçlendirilmiş kimyasal buhar çökeltme, mikrodalga plazmayla kimyasal buhar çökeltme ve buhar fazında büyütmedir. Bu yöntemlere ek olarak hidrotermal sentezleme ve elektroliz yöntemleri de yaygın olarak kullanılmaktadır.
Lazerle aşındırma yöntemi hammadde olarak grafit hedef kullanır. Yüksek basınç ve sıcaklık altında lazer ünitesi bombardımanıyla elde edilen grafit buharı helyum veya argon içeren soy gaz ortamında su soğutmalı bakır toplayıcı üzerinde birikirler. Bu yöntem sonucu bakır levha üzerinde hem karbon nanotüpler hem de karbon nano parçacıklar elde edilir. Her hangi bir katalizör kullanılmaması durumunda çok duvarlı karbon nanotüpler elde edilirken Co, Ni, Fe, Y gibi katalizörler kullanıldığında tek duvarlı karbon nanotüpler elde edilebilir. Görece basit olan bu üretim metot ilk olarak 1995 yılında karbon nanotüp sentezinde kullanılmıştır.
Karbon nanotüp sentezinde ilk kullanılan yöntemlerden biri de ark boşaltma yöntemidir. Katot ve anot olarak kullanılan iki çubuk arasında doğru akımla ark oluşturulmasıyla karbon nanotüp sentezi sağlayan bu yöntem yüksek basınçta ark reaktörü kullanımı gerektirir. Karbon nanotüpler, karbon nano parçacıkları ve karbon kümeleri ile birlikte katot üzerine toplanır. Lazerle aşındırma yönteminde de olduğu gibi, katalizörsüz koşullarda gerçekleştirilen üretimle çok duvarlı karbon nanotüpler elde edilirken Co, Ni, Fe, Y gibi katalizörler kullanıldığında tek duvarlı karbon nanotüpler elde edilebilir.
Solar fırın yöntemi güneş enerjisini kullanmasıyla dikkat çekse de verimsiz bir üretim yöntemi olduğu için sıklıkla kullanılmamaktadır.
Gaz halindeki karbonu hammadde olarak kullanan üretim yöntemleri genelde gelişmiş teknolojiler içermekte ve yüksek verimli üretim yöntemleri olarak tanınmaktadır. Bu üretim yöntemleri, karbon nanotüp üretimi dışında da sıklıkla kullanılmakta olup gün geçtikçe daha da gelişen yöntemlerdir. Kimyasal buhar çökeltme yöntemi nanomateryal üretiminde sıklıkla kullanılan bir metottur. Bu metot, gaz fazındaki hidrokarbon bileşikleri, asetilen, metan ve ya etileni hammadde olarak kullanmaktadır. Bu hammaddeler yüksek sıcaklıklarda ve nitrojen eşliğinde parçalanır. Karbon nanotüpler, bu karbon açısından zengin gazın içerisinde uygun substratlar üzerinde sentezlenir. Kullanılan substratlar katı ise işleme heterojen işlem, reaksiyonlar tamamıyla gaz fazında gerçekleşiyorsa işleme homojen işlem denir. Katalizör olarak genellikle Fe, Co ve Ni gibi geçiş metalleri kullanılır. Karbon nanotüp üretimi ark boşaltma ve lazerle aşındırma yöntemine göre daha düşük sıcaklıklarda gerçekleşir. Bu yöntemin en büyük avantajı karbon öbekleri ve nanopartiküller gibi yan ürünlerin en aza indirilmesi ve sentez yönünün ayarlanmasıyla yüksek miktarlarda karbon nanotüp üretilebilmesidir. Kimyasal buhar çökeltme yöntemi düşük maliyetle seri üretimi mümkün kılabilecek potansiyele sahip olduğu için endüstriyel önem taşımaktadır. Isıl kimyasal buhar çökeltme nano ölçekteki Fe, Co ve Ni parçacıklarının kullanımını içerir. Bu nano katalizörlerin oluşturulması için ısıl kimyasal işlemler kullanılır. Bu yöntem, yüksek kalitede karbon nanotüp üretimi, karbon nanotüp yapısı üzerinde kontrol ve geniş hidrokarbon çeşitliliği gibi avantajlar sağlamaktadır. Plazmayla güçlendirilmiş kimyasal buhar çökeltme yöntemi düşük sıcaklıklarda karbon nanotüp üretimine olanak sağlar. Düşük sıcaklıklarda sentezleme yapıldığı için soda kireci, Si, SiO2, cam gibi altlıkların kullanımına uygundur. Katalizör parçacıkları bu altlıkların üzerine yerleştirilerek karbon nanotüp üretimi sağlanır. Hammadde olarak C2H2, CH4, C2H4, C2H6, CO gibi hafif hidrokarbon gazlar kullanılır. Mikrodalga plazmayla kimyasal buhar çökeltme yönteminde çok duvarlı karbon nanotüpler silikon altlık üzerinde dışarıdan ısı uygulanmadan üretilebilir. Düşük ısılarda sentezleme, karbon nanotüplerin düzgün bir şekilde sıralanabilmesi ve çok düşük miktarda yan ürün oluşumu bu yöntemin avantajlarındandır.
Buhar fazında büyütme yöntemi diğer yöntemlere göre daha yeni bir yöntemdir ve kimyasal buhar çökeltme yönteminin geliştirilmiş hali olarak düşünülebilir. Bu yöntemde metal ya da ferrosen katalizörler hidrokarbon gazı işle birlikte reaktöre enjekte edilir. Sentezleme iki farklı fırında gerçekleştirilir. İlk fırında katalizör maddeler düşük sıcaklıkta buharlaştırılırken ikinci fırında katalizörler üzerinde karbon nanotüp üretimi gerçekleştirilir. Bu yöntem seri üretim için uygun bir yöntem olarak gösterilmektedir.
Hidrotermal üretim yöntemi endüstride petrol sanayi dahil birçok farklı alanda yaygın olarak kullanılır. Bu yöntem çeşitli teknikler kullanılarak sulu çözeltilerden kristal üretimi sağlar. Yüksek basınç altında yapılan sentezleme yöntemi farklı hammaddeler ve ürünler için özelleştirilebilir. Genel olarak üç farklı teknik kullanılmaktadır. Doymuş sulu çözeltiden buharlaştırılan hammadde ısıl fark kullanılarak ve ya çözünülebilirlik farkı kullanılarak kristal haline getirilir. Hemen hemen her hidrokarbon / su çözeltisi hammadde olarak kullanılabilir. Karbon nanotüp sentezinde genellikle bu çözeltinin içine nikel parçacıkları da katalizör madde olarak eklenmektedir. Oluşan çok duvarlı karbon nanotüpler, düzgün sıralanmış bir yapı gösterir.
Elektroliz yönteminde grafit bir anot kullanılarak eriyik lityum klorürün elektrolize edilmesiyle çok duvarlı karbon nanotüpler üretilir. Bu yöntemde karbon nanotüplere ek olarak farklı karbon yan ürünleri de oluşmaktadır.
Görüldüğü gibi karbon nanotüp üretimi için geliştirilen ya da modifiye edilen birçok üretim yöntemi bulunmaktadır. Bu yöntemlerin her biri, istenen karbon nanotüp yapısı ve kullanım amacına göre farklı avantaj ve dezavantajlar sağlamaktadır. Gelecekte atılması gereken en önemli adımlardan biri ise karbon nanotüp sentezinde seri üretime geçilmesidir.
Nanoteknoloji ve karbon nanotüplerin baş döndüren esintisi ülkemiz bilim dünyasını da içine almış durumdadır. Türkiye’nin farklı branşlardan meraklı ve yetenekli bilim insanları konu üzerinde çalışmalar ve deneyler yapmış: bilim dünyasına büyük katkılar sağlayan makaleler yayınlamıştır. Nanotüp üretimi ve analizi üzerine yoğunlaşan bu çalışmalar sanayi ölçekli uygulamalar için zemin hazırlamakta Türkiye’nin nanoteknolojideki rolünü ileri taşımaktadır.
Ülkemizde yapılan karbon nanotüp odaklı çalışmalarda başı üniversiteler çekmektedir. Karbon nanotüp ve kompozitlerinin kullanım alanları, karbon nanotüp üretiminde görülen reaksiyon basamakları, reaksiyon hızları ve ürün kaliteleri birçok bilim insanı tarafından derinlemesine araştırılmaktadır. Karbon nanotüp araştırmalarında dikkat çeken ve endüstri alanında umut vaat eden çalışmalar ise bazı kuruluşlar tarafından desteklenmektedir. Bu konular arasında karbon nanotüp / polimer kompozitlerinin kullanıldığı çalışmalar yoğunluk göstermektedir. Karbon nanotüp takviyeli plastik matrisli kompozitlerin sanayide kullanımının yanı sıra karbon nanotüp / metal Kompozit maddeler de kurumların dikkatini çekmektedir. Karbon nanotüp çalışmalarına destek sağlayan bir diğer çalışma ise Ulusal Nanoteknoloji Araştırma Projesidir. Bu proje kapsamında çeşitli üniversitelerde Ulusal Nanoteknoloji Araştırma Merkezleri kurulmuş, T. C. Devlet Planlama Teşkilatı tarafından çalışmalara 11 milyon TL kaynak ayırılmıştır. Proje kapsamında prototipler geliştirilmekte, karbon nanotüp kullanım alanları incelenmektedir. Karbon nanotüp çalışmalarında bir diğer katkı da Vizyon 2023 Projesi’nden gelmektedir. Bu proje kapsamında Nanoteknoloji Strateji Grubu yayımlanan “Nanobilim ve Nanoteknoloji Stratejileri” raporu, karbon nanotüp üretimi çalışmalarını ve karbon nanotüplerin enerji ve yakıt hücresi gibi konularda kullanımını öne çıkarmaktadır.
Nanoteknoloji ve nano malzemeler geleceğin teknolojik gelişmelerinde önemli bir rol oynamaktadır. Nano boyutta görülen eşsiz özellikler ve kompleks işlemlerin daha küçük alanlarda daha verimli bir şekilde yapılabilmesi, nanoteknolojiyi günümüz biliminin gözde bir konusu haline getirmiştir. 21. Yüzyılda dikkat çeken nano malzemeler arasında bulunan karbon nanotüp birçok araştırmaya konu olmuş farklı buluşlara yol açmıştır. Karbon nanotüpler temelde silindirik yapıda bulunun grafenler olarak tanımlanabilir. Hekzagonal karbon birimlerinden oluşan bu nanotüpler, boşluklu ve hafif bir yapıya sahiptir. Karbon nanotüpler yüksek termal ve elektrik iletkenlikleri, güçlü mekanik özellikleri ve kimyasal özellikleri ile dikkat çekerler. Karbon nanotüpler, hekzagonal birimlerin nanotüp eksenine göre dizilişine bağlı olarak üç gruba ayrılırlar. Bu gruplar koltuk tipi, zig zag tipi ve chiral tip olarak adlandırılır. Farklı dizilişler de farklı elektronik özellikler gözlemlenebilir. Karbon nanotüpler tek duvarlı, çift duvarlı ve ya çok duvarlı bir yapıya sahip olabilirler. Bu malzemelerden saf halde yararlanılabileceği gibi çeşitli özellikler kazandırmak için yüzeyleri fonksiyonel gruplarla dekore edilebilir ya da çeşitli malzemeler ile kompozitler oluşturulabilir. Karbon nanotüpler ve kompozitlerinin kullanım alanları arasında elektronik cihazlar, sensörler, süper kapasitörler ve aktuatörler, medikal uygulamalar, güneş enerjisi uygulamaları, li-ion piller, gaz ve hidrojen depolama teknolojileri bulunur. Bu kullanım alanlarına ek olarak karbon nanotüpler yapı maddeleri içerisinde güçlendirici katkı maddesi olarak da kullanılabilir. Yıllar içinde, farklı kullanım alanları ve karbon nanotüp özelliklerine ulaşmak, daha saf ürünler elde edebilmek, fonksiyonlandırılmış nanotüplerin üretmek ve toplu üretime uygun yöntemler geliştirmek adına farklı karbon nanotüp üretim yöntemleri geliştirilmiştir. Bu üretim yöntemleri lazerle aşındırma yöntemi, ark boşaltma yöntemi ve solar fırın yöntemi kimyasal buhar çökeltme (CVD), ısıl kimyasal buhar çökeltme (thermal-CVD), plazmayla güçlendirilmiş kimyasal buhar çökeltme, mikrodalga plazmayla kimyasal buhar çökeltme, buhar fazında büyütme, hidrotermal sentezleme ve elektroliz yöntemleri olarak sıralanabilir. Karbon nanotüp üretiminde katı ve ya gaz fazındaki karbon içeren hammaddeler ve çoğunlukla geçiş metalleri içeren katalizörler kullanılmaktadır. Her bir üretim yöntemi kendine has avantaj ve dezavantajlara sahiptir. Karbon nanotüp üretimi ve çalışmaları yüksek teknolojik potansiyele sahiptir. Ülkemiz ve dünyada bu potansiyelden yararlanmak için birçok çalışmalar yapılmakta, gelişmeler kaydedilmektedir. Bu zamana kadar karbon nanotüp teknolojileri önemli yollar katetmiş olsa da daha yapılacak çok iş ve yararlanılacak büyük bir potansiyel bulunmaktadır.
Disprosyum elementinin atom numarası 66 olup Dy sembolü ile gösterilir.
Fransız kimyager Paul Emile Lecoq de Boisbaudran tarafından disprosyum, oksit formunda asitte eritme ardından hidroksit oluşturmak için amonyak eklemesiyle keşfedilmiştir. Disprosyum elementini elde etmek için 30’dan fazla girişimde bulunmuştur.
Disprosyum, bulunması zor anlamına gelen yunanca “disprositos” kelimesinden adlandırılmıştır. İyon gelişim teknolojisi geliştirilene kadar disprosyum elementinin en saf şekli izole edilememiştir.
Disprosyum en nadir elementlerden olup serbest element formunda bulunamaz.
Disprosyumun çoğunluğu Çin’de bulunan iyon adsorbsiyon killerinde bulunmaktadır.
Disprosyum elementinin %99’u Çin’de olmak üzere dünya genelinde yıllık 100 ton üretilmektedir.
Birçok ülkede kullanımların çoğu temiz enerji sektöründedir. Lazer malzemeleri, nükleer reaktörler için kontrol çubukları ve sabit diskler gibi veri saklama alanlarında da disprosyum kullanılmaktadır.
Hibrit araçların motorlarında verimi artırmak için neodimiyum yerine disprosyum kullanılmaktadır. Disprosyuma hızla artan ilgiden dolayı ileride elementin bulunmasında sıkıntı olması beklenmektedir.
Disprosyum yakıt enjektörleri, mekanik rezonatörler, dozimetreler üretiminde ve çeşitli malzemelere takviye olarak kullanılabilir.
TANTAL
Geçiş metali olan tantal elementinin sembolü Ta olup, periyodik cetvelin 5B grubunda yer alır.
Tantal elementinin atom numarası 73 ve atom ağırlığı 180.88’dır.
Erime noktası 3.020°C olan tantal, metalik mavimsi gümüş renginde, ağır ve çok sert bir metaldir.
İlk kez 1802’de Ekeberg tarafından İsveç’te keşfedilen tantal, cevherlerinde birlikte bulunduğu niyobyuma benzer olması nedeniyle 1844’te Rose ve 1866’da Marignac tarafından niyobik ve tantalik asitlerin farklı olduğunun gösterilmesine kadar aynı element olarak kabul edilmiştir.
Tantalın saf halde elde edilmesi 1903’te Bolton tarafından başarıldı.
Tantal saf haldeyken işlenebilir. Hidrofluorik asit, flüorür iyonu içeren asitli çözeltiler ve serbest kükürt oksit dışında, 150°C’ın altındaki tüm kimyasal tepkimelere karşı dayanıklıdır.
Saf tantal yalnızca iki izotopu varken tantalın genel olarak bilinen 16 izotopu vardır.
Ta-180 az bulunan ve yarılanma süresi 1013 yıldan uzun olan, çok uzun ömürlü ve kararsız bir izotopdur.
Tantal elementi başlıca Kongo, Portekiz, Brezilya, Mozambik, Tayland, Nijerya ve Kanada’da bulunur.
Metalik tantal yüksek erime noktası, dayanıklılığı ve kolay işlenebilirliği, vücut sıvısından etkilenmemesi ve kimyasal olarak aktif olmaması özellikleri ile nükleer reaktörlerde, elektronik kondansatörlerin, vakum fırınlarının, uçak ve roket parçalarının, laboratuvar gereçleri, ameliyat aletleri ve cerrahi protezlerin yapımında kullanılır. Ayrıca kırılma indisi yüksek camlarda tantal oksit kullanılır.
Grafen oksit ve indirgenmiş grafen oksit, iki önemli grafen türevidir. Bu iki malzeme kimyasal bileşimlerindeki farklılıklardan dolayı farklı kimyasal ve yapısal özellikler gösterir. En belirgin farklılıkları elektriksel iletkenlik, hidrofilik davranış, mekanik dayanım ve dağılabilirlikleridir. Enerji depolama uygulamaları, sensörler, süperkapasitörler, güneş pilleri ve biyomedikal uygulamalarda farklı özellikler aranır.
Elmas ve grafit gibi karbon allotropları, keşfedildikleri günden bu yana en önemli malzemeler arasında yer almıştır. Grafit, üst üste dizilmiş altıgen karbon kristal tabakalardan oluşur. Doğal yollardan oluşur ve doğal koşullar altında en kararlı karbon allotropudur. Grafit, 1500’lü yıllardan beri birçok farklı amaç için kullanılmıştır; ancak en önemlisi, grafenin keşfedilmesinde rol almıştır. Grafen, altıgen kafes yapıda, tek atom kalınlığında bir karbon levha veya tek katmanlı grafit olarak tanımlanır. Sıklıkla “mucize” malzeme olarak anılan grafen, benzersiz özelliklerinden dolayı büyük ilgi görmüştür. Günümüzde bilinen en ince ve en hafif malzemedir. Çekici özellikleri arasında güçlü elektrik iletkenliği (106 S cm − 1), güçlü termal iletkenlik (5000 W m − 1 k − 1), yüksek mekanik mukavemet (~ 40 N m − 1), yüksek elastisite modülü (1 TPa) , optik geçirgenlik (~% 97,7) ve geniş özgül yüzey alanı (~ 2600 m2 g − 1) bulunur. Ne yazık ki, bu malzemenin sentezi -özellikle endüstriyel ölçeklerde- zordur. Bu nedenle, grafenin keşfi, grafen oksit (GO) ve indirgenmiş grafen oksit (rGO) gibi türevlerinin keşfedilmesine yol açmıştır.
Grafen oksit, grafenin oksitlenmiş formu olarak kabul edilir. Grafen oksidin keşfi, grafenin keşfedilmesinden çok daha öncedir. 1859’da GO ilk olarak grafitin oksidasyonu ve pul pul dökülmesiyle sentezlenmiştir. Bununla birlikte, grafenin keşfine kadar grafen oksit önemsiz bir malzeme olarak görüldü. Grafenin keşfedilmesinden sonra grafen oksit de grafen elde etmenin uygun bir yolu olarak dikkatleri çekmeyi başardı. Bu noktadan sonra grafen oksit üzerine yapılan çalışmalar hız kazandı ve çeşitli uygulamalara entegre edildi. GO sentezi esas olarak tepeden aşağı yaklaşımla üretilir. Grafitin güçlü oksidanlar veya sülfürik asit ve potasyum permanganat ile işlenmesi ve ardından sonikasyon ve kayma gerilimi gibi mekanik eksfoliyasyon yöntemleriyle elde edilir. Bununla birlikte, kimyasal buhar çökeltme (CVD) gibi aşağıdan yukarı sentez yöntemleriyle GO elde etmek de mümkündür. Üretim süreci sırasında grafit tabakalarının sp2 yapısı bozulur ve karboksil, hidroksil veya epoksi grupları gibi birkaç farklı oksijen içeren fonksiyonel gruplar elde edilir. Grafit katmanlarının oksidasyonu, katmanlar arasındaki aralığı artırır. Sonraki eksfoliyasyon aşaması, homojen grafen oksit katmanlarından oluşan bir çözelti elde etmek için grafit oksit katmanlarının birbirinden ayrılması ile yapılır. Başlangıç malzemesi olarak kullanılan grafitin ilk oksidasyon koşulları, verilen enerji, enerji kaynağı ve yanal boyutu gibi farklı parametreler, ortaya çıkan GO yapısı ve oksidasyon seviyesi üzerinde güçlü etkiye sahiptir. Bu parametrelerin manipülasyonu yoluyla, GO’nun özelliklerinde değişiklikler yapmak mümkündür. Özellikle oksidasyon seviyesi, GO levhaların kimyasal değişkenliğini güçlü bir şekilde etkiler.
Sp2 bağlarının parçalanması özelliklerin değişmesine neden olur. Grafen oksit, oksidasyon derecesine bağlı olarak yalıtkan veya yarı iletken bir davranışa neden olan düşük elektrik iletkenliği gösterir. GO levhaların özgül yüzey alanı yaklaşık 890 m2g-1’dir. GO, 207.6 ± 23.4 GPa elastisite modülü ve 120 MPa kırılma mukavemeti ile yüksek mekanik mukavemet gösterir. GO tabakalarının epoksi ve hidroksi grupları, karbon bazal düzleminde bulunurken, karboksil grupları kenarlarda bulunur. GO yapısında değişken miktarlarda karbonil, fenol, lakton ve kinin de gözlenir. Fonksiyonel grupların bolluğu, büyük ölçüde oksidasyon seviyesine bağlı olan hidrofilik bir davranış sağlar. GO tabakaları, yüksek elektrik yük barındıran yapıları ve hidrofilik olmalarından dolayı iyi çözünürler. Geniş bir konsantrasyon aralığında kararlı dispersiyonlar oluşturabilirler. Ek olarak, yüzey ve çözücü arayüzü arasındaki hidrojen bağı nedeniyle etilen glikol, dimetilformamid (DMF), n-metil-2-pirolidon (NMP), tetrahidrofuran (THF) gibi organik çözücüler içinde dağılabilirler. Grafen oksit oksitlenmiş içerdiği oksit bileşiklerinden dolayı transparan özellik gösterir.
Grafen oksidin indirgenmesi, grafen benzeri davranışların sağlanması için oldukça ilgi çekici bir yoldur. İndirgenmiş grafen oksit yapıları elde etmek için kimyasal, termal veya foto-termal indirgeme yöntemleri kullanılır. Ancak rGO (indirgenmiş grafen oksit), asla saf grafen yapısında elde edilemiyor. Ciddi indirgemeden sonra bile rGO, GO’nun kimyasal oksidasyon sentezinden geriye kalan oksijen ve yapısal hataları içermeye devam eder. RGO sentezi için kullanılan kimyasal indirgeme ajanları genellikle NaB gibi inorganik veya fenil hidrazin hidrat veya hidroksilamin gibi organik ajanlardır. Termal indirgenme, 300 ° C-2000 ° C arasında, indirgenme atmosferinde gerçekleşir. Son olarak, GO’nun fototermal indirgenmesi, 390 nm’nin altındaki dalga boylarında (enerji> 3,2 eV) doğrudan bir lazer ışınıyla yapılabilir. Çalışmalar termal indirgeme yöntemlerinin kimyasal indirgeme yöntemlerine göre avantajlı olduğunu göstermektedir. Kimyasal indirgeme yöntemleriyle sadece daha düşük bir indirgeme seviyesi elde edilmez, aynı zamanda yöntemlerde kullanılan indirgeme ajanları da oldukça toksiktir. Termal indirgeme yöntemleri, yüksek indirgeme seviyeleri ve nispeten çevre dostu süreçleri nedeniyle daha avantajlıdır. Ortaya çıkan ürünün karbon / oksijen oranı önemli bir özelliktir. C / O oranı ne kadar yüksekse, rGO’nun özellikleri saf grafene o kadar yakın olur. İndirgeme süreci, GO’nun yapısal özelliklerinde, mekanik mukavemetinde, stabilitesinde, çözünürlüğünde ve reaktivitesinde büyük değişikliklere neden olur. Bu değişiklikler doğrudan GO yapısındaki oksijen içeren bileşiklerin ortadan kaldırılması ve indirgeme işleminden sonra sp2 yapısının tekrar oluşması ile ilgilidir. GO indirgeme işleminin en önemli etkilerinden biri, elektrik iletkenliğinin 6300 S cm-1’e kadar artması ve 320 ’e ulaşan yüksek mobilitedir. İndirgenme işlemi sırasında rGO’nun yüzey alanı da artar. rGO levhaları, elastisite modülü ~ 1.0 TPa ve grafene oldukça yakın olan ~130 GPa mukavemeti ile güçlü mekanik mukavemet gösterir. GO’nun aksine, indirgenmiş grafen oksit, yapının artan C / O oranı nedeniyle hidrofobik bir davranış kazanır. RGO’nun hidrofobikliğinden kaynaklanan bu malzemenin çözünürlüğü de indirgeme sonrasında azalır. Çözünürlüğe ek olarak, rGO’nun koloidal davranışı da kritik pıhtılaşma konsantrasyonunu azaltan indirgeme sürecinden etkilenir. Her ne kadar grafen yapısı GO’nun azaltılmasıyla tam olarak grafen yapısına sahip olmasa da indirgenmiş grafen oksit; kontrol edilebilir işlevsellik, yüksek elektrik ve ısıl iletkenlik, başlangıç malzemesinin mevcudiyeti, ucuz ve ölçeklenebilir hazırlama süreci gibi yararlı özelliklerini hala muhafaza etmektedir.
Hem grafen oksit hem de indirgenmiş grafen oksit, grafenin değerli türevleri olarak geliştirilmiştir. Bununla birlikte, hem yapısal hem de kimyasal özelliklerinde kritik farklılıklar gösterirler. Yukarıdaki bölümlerde bahsedildiği gibi, GO ile rGO arasındaki temel fark, yapılarındaki C/O oranıdır. GO yapılarında C/O oranı çok düşükken, neredeyse sıfır oksijen içeriğine sahip olan rGO yapılarında çok daha yüksektir. GO ve rGO arasındaki diğer farklar esas olarak C/O oranları arasındaki bu farktan kaynaklanmaktadır. En önemli fark, bu iki malzemenin elektriksel iletkenliği olarak kabul edilir. GO yalıtkan veya yarı iletken davranış gösterirken, rGO yüksek elektrik iletkenliği (6300 S cm – 1) gösterir. GO ve rGO’nun iletkenlikleri arasındaki bu fark, bu iki malzeme için farklı uygulama olanakları sağlar. GO ve rGO yapıları arasındaki bir diğer önemli fark, spesifik yüzey alanıdır. GO, saf grafenin son derece yüksek yüzey alanını (~ 2600 m2 g − 1) yakın olan rGO yapısına kıyasla nispeten daha düşük yüzey alanına (890 m2g-1) sahiptir. GO’nun mekanik mukavemetinin de rGO’dan daha düşük olduğu bulunmuştur. GO’nun elastik modlünün, rGO ve grafenin neredeyse yarısı olduğu saptanmıştır. Oksijen içeren bileşiklerin bir diğer önemli etkisi, artan yüzey yükünün neden olduğu hidrofilik davranıştır. Bu nedenle, GO yapıları hidrofilik davranış gösterirken, rGO oksijen içeren bileşiklerin kaybından dolayı hidrofobik davranış gösterir. Hidrofilik / hidrofobik davranış arasındaki farklar ayrıca GO ve rGO’nun dağılabilirliğinde de farklara neden olur. Grafen oksit, sulu ortamda yüksek dağılabilirlik gösterirken, rGO çok daha düşük dağılabilirlik gösterir. Örneğin, rGO’nun oksijen içeriği% 31’den% 9’a düşürüldüğünde, sonikasyondan sonra malzemenin dağılabilirliği 8’den 2.5 ug/ml’ye düşmüştür. Ek olarak, rGO’nun koloidal davranışı dağılabilirlikle aynı eğilimi izler. GO ve rGO’nun farklı özelliklerinin her ikisi de bilim camiasında ve endüstride çeşitli uygulamalar bulmuştur.
rGO, enerji depolama uygulamaları için lityum iyon, lityum sülfür ve lityum oksijen pillerinde kullanılır. Bu malzemenin yüksek yüzey alanı, yüksek kapasiteli enerji depolama cihazları elde etmek için büyük bir avantaj sağlar. Şarj edilebilir pillerin anot ve katot malzemelerinde yüksek iletkenliğinden dolayı kullanılmaktadır. İletken karbon ağı, etkili iyon transferini ve elektron değişimini destekler. Dahası, lityumun grafen düzlemindeki yüksek yayılma gücü hız kapasitesini artırır. Örneğin, Fe2O3 nanopartikülleri ile desteklenen rGO levhalar 1227 mAh g-1 şarj kapasitesi sergileyen Li-ion piller için bir anot malzemesi olarak kullanılır. RGO anot elektrotları üzerine yapılan birkaç farklı çalışma, rGO’nun yüksek kapasiteli enerji depolama uygulamaları için uygun bir malzeme olduğunu göstermiştir. Ayrıca rGO g katot malzemesi olarak da kullanılabilmekte. Anot malzemelerinin aksine, yüksek kapasiteli katot elektrotlar için, rGO yapısında yüksek miktarda fonksiyonel oksijen içeren bileşikler gereklidir. Şarj edilebilir piller de yapılarında GO kullanmaktadır. rGO’ya benzer şekilde, GO malzemesinin yüksek özgül yüzey alanı, bu malzemelerin yüksek kapasitesi için önemlidir. Ek olarak, GO yüzeyindeki oksijen içeren bileşikler, elektrokimyasal malzemeler için aktif bağlanma noktaları oluşturur. GO’nun elektriksel özellikleri, oksijen içeren bileşiklerin konsantrasyonlarını değiştirerek ayarlanabilse de, GO bazlı anotlar, katı elektrolit ara faz (SEI) oluşumu ve Li-iyonların oksijen fonksiyonel grupları ile reaksiyonu nedeniyle zayıf döngü kapasitesi gösterir. GO, Li-ion pillerin anot malzemelerinde zayıf performans göstermesine rağmen, katot malzemelerinde başarıyla kullanılmıştır. Örneğin, GO / LiFeSO4F kompoziti, lityum iyon piller için gelişmiş döngü stabilitesi ve hız kapasitesi için bir katot materyali görevi görür. GO kompozitler ayrıca yüksek enerji yoğunluklu pillerin geliştirilmesi için Lityum-sülfür pillerde kullanılır. Örneğin, Sülfür ve lityum polisülfitler, GO yapısı üzerindeki reaktif fonksiyonel gruplar kullanılarak GO malzemesi üzerinde immobilize edilebilir. GO ile sülfür veya polisülfidler arasındaki güçlü etkileşim, 950–1400 mAh g-1’lik yüksek geri dönüşümlü lityum / sülfür hücrelerine ve 50’den fazla derin döngü için kararlı döngüye olanak tanır.
GO ve rGO’nun geniş özgül yüzey alanı, güneş pili uygulamaları için son derece çekici bir özelliktir. Yarı iletken özelliklerinden dolayı GO, organik fotovoltaikte delik taşıma ve elektron engelleme tabakası ve etkili bir arayüz tabakası (IFL) olarak kullanılır. GO, termal ve çevresel stres altında aktif katman-IFL arayüz kararlılığını artırarak cihazların dayanıklılığını önemli ölçüde artırır. Ayrıca GO, boyaya duyarlı güneş pillerinin katot malzemelerinde rGO-TaON kompozit ve çok duvarlı karbon nanotüp-rGO nanoribbon gibi rGO kompozitlerinin karşı elektrotları ile kombinasyon halinde kullanılır.
Hem GO hem de rGO, gaz algılama uygulamalarında kullanılır. rGO, yüksek yüzey alanı ve elektriksel iletkenliği ile dikkat çekerken, GO aktif yüzey ve yüksek yüzey alanı sayesinde iyi algılama yetenekleri sergiliyor. rGO / CuFe2O4 nanokompozit, rGO iletkenliğini ve CuFe2O4’ün algılama yeteneğini kullanan yüksek performanslı bir NH3 gaz sensörü için kullanılır. Öte yandan, trimetilamin (TMA) gaz algılama için grafen oksit ve bakır oksit (GO / Cu2O) nanokompozit bazlı sensörler kullanılır. Sistem, 60 günde iyi hassasiyet, tersinirlik, seçicilik ve kararlılık gösterir. Ek olarak, hem rGO hem de GO nanokompozitlerinin hidrojen, nitrojen dioksit ve nem için iyi bir sensör olduğu bulunmuştur.
Süper kapasitörler, elektrokimyasal çift katmanlı kapasitansa (EDLC) dayalı olarak çalışır ve bir elektrot ile bir elektrolit arasındaki elektrokimyasal arayüzde nanoskopik yük ayırma yoluyla enerji açığa çıkarır. rGO, yüksek elektrik iletkenliği, özgül yüzey alanı ve döngüsel kararlılığı nedeniyle yeni nesil süper kapasitör uygulamaları için iyi bir aday olarak kabul edilir. Süper kapasitör elektrotlarının geliştirilmesinde rGO / Zn / PCz, rGO-karbon siyahı ve rGO / ZnO gibi birkaç farklı rGO nanokompoziti kullanılmaktadır. Bu süper kapasitörlerin kapasitansı, 33,80 F / g’ye kadar artırılarak yüksek güç (P = 442,5 W / kg) ve enerji depolama (E = 1,66 Wh / kg) yetenekleriyle sonuçlanır. Ek olarak, süper kapasitör uygulamaları için aerojel formunda indirgenmiş grafen oksit de kullanılır ve yüzey alanını ve dolayısıyla süper kapasitörün kapasitansını daha da arttırır. Bununla birlikte, rGO ile karşılaştırıldığında süper kapasitör uygulamaları için GO üzerine yapılan çalışmalar, GO malzemesinin düşük elektriksel iletkenliği nedeniyle oldukça azdır.
Grafen oksidin kimyasal olarak aktif ve gözenekli yapısı, membran özelliklerinin ve ayırma performansının iyileştirilmesi için kullanılmıştır. GO-polimer kompozitler, O2 / N2 ve CO2 / N2 ayırma uygulamaları için kullanılır. Dahası, membran yapısına GO dahil etmek, membranın mekanik özelliklerini iyileştirir.
RGO ve GO kompozitleri optik, elektrokimyasal ve alan etkili transistör (FET) biyosensörler olarak kullanılır. Bu kompozitler genellikle platin ve gümüş gibi metal nanopartiküller veya polimerler içerir. Biyouyumlu GO ve rGO, glukoz, DNA, D-glukozamin, mikroRNA, DNA / RNA aptamerleri, mikro RNA, optik aptamer ve DNA mutasyonları gibi biyomoleküllerin algılanması için yaygın olarak kullanılmaktadır. GO malzemesinin floresan davranışı, kanser biyobelirteçleri glikoz, H2O2, dopamin, NA’lar, gıda toksinleri ve metal iyonları gibi farklı biyolojik molekülleri tespit etmek için optik biyoalgılama uygulamaları için kullanılır.
GO, mükemmel DNA absorpsiyon özellikleri ve biyouyumluluk gösterir. GO’ya DNA bağlanmasının çok kararlı ve geri döndürülebilir bir süreç olduğu saptanmıştır. Bu özellikler, çeşitli biyo-uygulamalar için DNA bazlı grafen malzemeler hazırlanmasını mümkün kılar. GO bazlı materyaller özellikle ilaç dağılım sistemlerinde dikkat çekmektedir. GO nanosheets, çok düşük sitotoksisite ve yüksek hücresel alım gösterir, bu nedenle ilaç dağıtımı ve hücre içi floresan nanoprob için ideal nano taşıyıcılar olarak keşfedilmiştir. Etkin ilaç dağıtımı için nano-GO, GO / hidrojel bazlı anjiyojenik, hyaluronik asitle desteklenmiş GO nanohibritlerin desenli substratları, işlevselleştirilmiş GO nanopartikülleri ve polimer aşılama yoluyla GO gibi çeşitli grafen bazlı kompozitler kullanılmıştır. İlaç dağılımı uygulamalarının yanı sıra GO bazlı malzemeler de teşhis ve fototermal terapi uygulamaları için kullanılmaktadır. Alzheimer hastalığının teşhisi için florojenik resveratrol içeren GO ve hibrit GO bazlı plazmonik-manyetik çok işlevli nanoplatformlar kullanılır. Terapötik uygulamalar anlamında, ultra verimli fototermal kanser tedavisi için altın nanostarlar ve GO kombinasyonu kullanılmıştır. Ek olarak, mükemmel fototermal etki, rGO’ya kansere karşı fototermal tedavide büyük potansiyeller ve ısı kaynaklı kontrollü ilaç dağılımı sağlar.
Son olarak, hem rGO hem de GO, özel fizikokimyasal özellikleri ve benzersiz antibakteriyel mekanizmaları nedeniyle geniş bir antibakteriyel spektrum ile umut verici antibakteriyel özellikler gösterir. Gümüş ve altın gibi metaller, bu yapıların antibakteriyel aktivitesini arttırmak için genellikle GO ve rGO ile nanokompozit malzemeler olarak kullanılır. Yüksek kalitede çeşitli ZnO içeriklerine sahip ZnO / GO kompozitler ve bu kompozitler, düşük sitotoksisite ile E. coli’ye karşı üstün antibakteriyel özelliklere sahiptir. GO bazlı materyallerin antibakteriyel özellikleri ayrıca dental patojenleri öldürmek için de kullanılır.
Ayrıca Bakınız: Grafenin Çeşitli Sektör ve Alanlarda 60 Adet Kullanım Alanı
Grafen ve grafen türevleri, benzersiz özelliklerinden dolayı önemli malzemeler haline gelmiştir. Özellikle grafen oksit ve indirgenmiş grafen oksit, değerli, düşük maliyetli, kolayca elde edilebilen grafen türevleri olarak kabul edilir. rGO (indirgenmiş grafen oksit), saf grafene benzer özellikleri ile dikkatleri çekiyor. GO (grafen oksit) ilk önce grafen sentezi için bir ara malzeme olarak düşünüldü, ancak o zamandan beri çeşitli farklı uygulamalar için kullanıldı. GO, grafit tabakalarının oksidasyonu ve pul pul dökülmesiyle elde edilir ve karbon bazal düzleminde ve kenarlarında karboksil, hidroksil veya epoksi grupları gibi önemli miktarda oksijen içeren bileşikler içerir. rGO, oksijen içeren grupların miktarında önemli bir azalmaya neden olan GO’nun kimyasal veya termal indirgenmesi ile elde edilir. C / O oranı arttıkça rGO yapısı özellikleri bozulmamış grafene daha çok benzer. Kimyasal ve yapısal farklılıklar nedeniyle, GO ve rGO farklı mekanik, elektriksel ve kimyasal özellikler gösterir. GO ve rGO arasındaki en önemli farklardan biri bu malzemelerin elektriksel iletkenliğidir. GO, yalıtkan veya yarı iletken davranış gösterirken, rGO neredeyse özellikleri bozulmamış grafen kadar iyi olan mükemmel elektriksel iletkenlik gösterir. Oksijen içeren bileşiklerin ortadan kaldırılması, GO’ya kıyasla rGO materyalleri için daha yüksek bir spesifik yüzey alanına yol açar (spesifik yüzey alanı yüzey alanının özkütleye oranıdır). Diğer bir ayırt edici özellik, hidrofilik / hidrofobik davranıştır. GO güçlü hidrofilik davranış gösterirken, rGO hidrofobik davranış gösterir. Dahası, rGO’nun mekanik özellikleri GO’nun mekanik özelliklerinden çok daha üstündür. Öte yandan GO, rGO’ya kıyasla çok daha iyi dağılabilirlik ve koloidal özellikler gösterir. GO ve rGO’nun ilginç özellikleri çeşitli farklı uygulamalarda kullanılmaktadır. GO ve rGO nanokompozitleri, enerji depolama uygulamaları, sensörler, biyosensörler, biyomedikal uygulamalar, güneş pilleri ve süperkapasitörlerde yaygın olarak kullanılmaktadır. Her iki malzemenin de yüksek yüzey alanı, tüm bu uygulama alanları için büyük bir avantajdır. RGO’nun yüksek iletkenliği, Li-ion pillerin anot malzemesinin kapasitesini ve döngüsel kararlılığını iyileştirmek için kullanılır. Öte yandan GO’nun kimyasal aktivitesi, Li-ion pillerin katotunda kullanılır. Li-ion pillere ek olarak GO ve rGO, Lityum-sülfür ve lityum-oksijen pillerdeki yüksek kapasiteli uygulamalar için de kullanılır. Benzer şekilde, süper kapasitörlerin kapasitansını artırmak için GO ve rGO kullanılır. GO’nun biyouyumluluk ve DNA bağlanma özelliklerinin, ilaç dağıtımı, teşhis ve terapötik uygulamalar gibi biyomedikal uygulamalarda faydalı olduğu bulunmuştur. GO bazlı nanokompozitler, kanser tedavisi uygulamaları ve Alzheimer hastalığını teşhis etmek için kullanılır. Sonuç olarak, grafen türevleri GO ve rGO, enerji depolama, elektronik, sensörler ve biyo-tabanlı uygulamalarda grafen bazlı uygulamalar için gelecek vaat eden malzemelerdir.
1.Raslan, A., del Burgo, L. S., Ciriza, J., & Pedraz, J. L. (2020). Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. International Journal of Pharmaceutics, 119226.
2.Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS nano, 4(11), 6557-6564.
3.Ling, S. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering.
4.McCoy, T. M., Turpin, G., Teo, B. M., & Tabor, R. F. (2019). Graphene Oxide: Surfactant or Particle?. Current opinion in colloid & interface science.
5.Lawal, A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics, 111384.
6.Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC advances, 6(69), 64993-65011.
7.Xia, M. Y., Xie, Y., Yu, C. H., Chen, G. Y., Li, Y. H., Zhang, T., & Peng, Q. (2019). Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. Journal of Controlled Release.
ÖRÜMCEK AĞI
Örümcek ağı karbon nanotüp ve grafen kullanarak üretildiğinde, günümüzde savunmada, zırh ve halat üretiminde kullanılan kevlardan daha hafif ve daha güçlü yapıda lif elde edilmektedir. Bir grup örümceğe karbon nanotüp, su ve grafenden oluşan karışımın püskürtülmesi ile maruz kalan örümceklerin nanoparçacık katkılı suyu içtikleri ve geri kalanını vücutlarının yaptığı düşünülüyor. Örümceklerin karbon nanotüp ve grafeni ağın içine nasıl kattıkları ise henüz bilinmiyor.
Kurşun geçirmez zırhlar, sinir rejenerasyonu için tıbbi cihazlar, tekstil veya elektronik gibi alanlarda bilinen en güçlü lif olmasıyla karbon nanotüp ve grafen ile yapılan örümcek ağı kullanılabilir.
Konuyla alakalı ürünler için aşağıdaki linkleri inceleyebilirsiniz.
Nanoteknoloji ile bilgisayar teknolojisinde büyük adımlar atılmaktadır. Daha verimli ve hızlı işlemci için 5 nm’den küçük transistörler kullanarak bir çip üzerine daha fazla transistör yerleştirilebilmektedir. Grafen gibi iki boyutlu 0.65 nm kalınlıkta bir malzeme olan molibden disülfür kanal ve 1 nm karbon nanotüp geçitten oluşan transistör Berkeley araştırmacıları tarafından geliştirilmiştir.
1965 yılında Gordon Moore, transistörlerin gelişimi üzerine Moore Yasası’nı öne sürmüştür. Günümüz teknolojisinde transistörler 14 nm ölçeğe gelmiş durumda ve 2018 yılında piyasaya süreceği 10 nm transistör teknolojisi ile Intel de hala Moore Yasası’nın öngörülerini aşamamış durumdadır. Şu an bu endüstri silisyum temelli ilerlemekte olduğu için ancak 5 nm’ye kadar bir transistör üretiliyor.
ABD Enerji Bakanlığı’nın Berkeley Ulusal Laboratuvarı’ndan Ali Javey liderliğindeki araştırma grubu sadece 1 nm uzunluğa sahip geçit ile çalışan nanotransistör ürettiler. Günümüzde tek bir çip üzerinde 1 milyardan fazla transistör olduğu düşünülebilir.
Günümüzde nanoteknoloji, doğada bulunan maddelerden farklı olarak biyolojik moleküllerin özelliklerini kısmen veya tamamen değiştirebildiğinden, gıda sanayiisinde önemli bir potansiyele sahiptir. Araştırmacılar yalnızca gıda tadını değil, aynı zamanda gıda güvenliği, besin dağıtımı gibi konuları etkileyecek olan nanomalzemeler üstünde çalışmaktadırlar. Yiyeceklerin yetiştirilmesi, üretilmesi, işlenmesi veya paketlenmesi sırasında nanoparçacıklar ve nanoteknoloji teknikleri kullanıldığında, gıda “nano-gıda” olarak adlandırılabilir. Özellikle üçüncü dünya ülkelerinde yüksek kaliteli besin maddeleri ve içme suyuna ulaşmadaki bazı zorluklar nedeniyle nanoteknoloji gıda endüstrisindeki önemli olarak düşünülmektedir.
Tarımdan gıdaların paketlenmesine kadar nanoteknoloji uygulamalarına bazı örnekler aşağıda listelenmiştir.
Tarım Alanında
?Pestisit, gübre ve diğer tarımsal kimyaları daha etkili bir şekilde vermek için nanokapsüller
?Büyüme hormonlarının kontrollü olarak verilmesi
?Zemin koşullarını ve ekin büyümesini kontrol etmek için nanosensörler
?Hayvanların ve bitki patojenlerinin tespiti için nanosensörler
?Aşıları aktarmak için nanokapsüller
?Bitkilere DNA modifikasyonları uygulamada (Targeted Genetic Engineering)
Gıda işleme
?Standart bileşenlerde nutrasötiklerin biyolojik uygunluğunu arttıran nanokapsüller
?Nanokapsüllü aroma arttırıcılar
?Jelleşme ve viskozleştirici ajanlar olarak kullanılan nanotüpler ve nanoparçacıklar
?Gıdanın zararlı kimyasallarını veya patojenleri çıkarmada kullanılan nanoparçacıklar
?Besin maddelerinin daha iyi bulunması ve dağılması için kullanılan nanoemülsiyonlar ve partiküller
Gıda Paketlemesi
?Kimyasal maddeleri ve gıda kaynaklı patojenler gösteren antikorları tutturmak floresan nanopartiküller
?Sıcaklık, nem ve zamanı kontrol etmek için biyolojik olarak parçalanabilen nanosensörler
?Oksijeni absorbe eden ve bozulmayı önleyen bariyer materyalleri olarak nanokiller ve nanofilmler
?Etilen tespiti için elektrokimyasal nanosensörler
?Antimikrobiyal ve antifungal yüzey elde etmek için gümüş, magnezyum ve çinko gibi anti bakteriyel nanoparçacıklar
?Daha hafif, daha güçlü ve ısıya dayanıklı ambalaj filmleri elde etmek için silikat nanopartiküller
Gıda Takviyeleri
?İlaç taşıyıcı olarak selüloz nanokristal kompozitler
?Gıdanın rengini ya da tadını değiştirmeden besin maddelerini hücrelere daha verimli bir şekilde taşımak nanochoclates
Kanser Tedavisinde Titanyum Dioksit Nanoparçacıklarının Uygulanması Dünyanın en yaygın elementlerinden biri olan Titanyum, bitkilerde ve hayvanlarda bulunabilen bir metaldir. Doğal olarak oksijenle reaksiyona girer ve genellikle topraklarda, kumlarda ve cevherlerde bulunan titanyum oksitler oluşturur. Aslında, günlük hayatımızda, boya, kağıt, plastik, kozmetik, güneş kremi gibi çok çeşitli kullanım alanlarına sahip olduğumuz için titanyum dioksite aşinayız.
v
Fulleren karbonum bir alotropudur. Yapısı beş ila yedi atomlu kaynaşmış halkalarla kapalı veya kısmen kapalı bir küre oluşturmak için sigma veya pi bağlarıyla birbirine bağlanmış karbon atomlarından oluşur. Fulleren molekülü, tüp, elipsoit, küre vb. gibi birçok şekil ve büyüklükte olabilir. 1980’lerde keşfedilmesinden bu yana fulleren, özellikle elektronik, malzeme bilimi ve nanoteknoloji alanlarındaki araştırmalarda yoğun olarak kullanılmaya başlandı.
Fullerenler çok iyi elektriksel ve kimyasal özelliklere sahip olmalarına rağmen, su gibi polar çözücülerde zayıf bir çözünürlüğe sahiptirler. Bu zayıf çözünürlük, fullereni biyolojik uygulamalarda tercih edilmeyen bir malzeme yapmaktadır. Fullerenin polar çözücülerdeki çözünürlüğünü artırmak için birçok çalışma yapılmıştır. Bu çalışmalar yoğun olarak işlevselleştirilmiş fulleren yani çözünürlüğü arttırılmış Polihidroksillenmiş Fulleren (PHF, aynı zamanda Fullerenol veya Fullerol olarak da adlandırılır) üzerinedir.
Çalışmalar, Polihidroksillenmiş Fullerenin, karbonlara (-OH) bağlı 60 karbon atomu ve hidroksil gruplarından oluşan bir yapıya sahip olduğunu göstermiştir. PHF, 40’ın üzerinde hidroksil grubuna sahip olması nedeniyle, suda yüksel çözünürlüğe ( 50 mg/ ml’nin üstünde) sahiptir.
Polihidroksile Fullerenin Sentezi:
PHF sentezi sırasında, ilk olarak, sodyum nitritin yoğunlaştırılmış HN03 ile reaksiyonu ile üretilen azot dioksit radikalleri, C60 molekülüne (Fulleren) ilave edilir. PHF, azot dioksite karşı yüksek tepkiselliğe sahiptir. Bu kimyasal reaksiyon polinitro fullerene C60 (N02) n ile sonuçlanır. Daha sonra, polinitro fullerenlerin sulu NaOH içerisinde hidrolizi sonucu polihidroksile edilmiş fullerenler (Fullerenler) elde edilir. Aşağıda tekime basamakları gösterilmiştir.
Fullerenollerin Özellikleri:
Uygulama Alanları:
Grafen, grafite benzer şekilde saf karbondan oluşan, ancak onu olağanüstü hafif ve güçlü kılan özelliklere sahip bir malzemedir. Bir metrekarelik bir grafen tabakası 0,77 miligram ağırlığındadır. Mukavemeti çeliğe göre 200 kat daha fazladır ve yoğunluğu karbon fiberinkine benzer. Tüm bunlar, kırılmadan yüksek bükülme kuvvetlerine dayanmasını sağlar. Elektrik ve ısı için en iletken malzemelerden biridir, bu da onu elektronik ve diğer birçok endüstri için mükemmel bir malzeme yapar.
Uygulamaları neredeyse sınırsızdır ve birçok alanda devrim yaratmayı vaat eder: elektronik ve bilgi işlemden inşaat ve hatta sağlığa kadar. Bu listede neredeyse tüm grafen uygulamalarını bulabilirsiniz – bazıları hâlihazırda ticarileştirilmiş, bazılarının gerçekleşmesi için yıllar gerekir.
Bir hatırlatma: grafene “harika malzeme” denilmesinin bir sebebi var! Bununla ilgili henüz yayınlanmamış ama yarın dünyayı değiştirebilecek onlarca araştırma var. Öte yandan, burada listelediğimiz potansiyel uygulamalardan bazıları gelecekte de kanıtlanamayabilir. Bu nedenle bu listenin tüm grafen uygulamalarını içerdiğini iddia edemeyiz ancak tartışmasız grafen uygulamalarının çevrimiçi bulabileceğiniz en kapsamlı listelerinden biridir.
Sorumluluk Reddi: Bu gönderinin veya diğer bağlantılı materyallerin içeriği yalnızca bilgilendirme amaçlıdır ve tıbbi veya teknik tavsiye olarak alınmamalıdır.
Listeye rehber:
Grafenin Enerji Endüstrisindeki Uygulamaları: Madde 1-6
Grafenin Tıpta Uygulamaları: Madde 7-22
Elektronikte Grafenin Uygulamaları: Madde 23-34
Grafenin Gıda Endüstrisindeki Uygulamaları: Madde 35-39
Sporda Grafenin Uygulamaları: Madde 40-45
Diğer Grafen Uygulamaları: Madde 46-60
Grafenin Enerji Endüstrisindeki Uygulamaları
Daha hafif, esnek ve şeffaf güneş pilleri geliştirme fikri bir süredir ortalıkta dolaşıyordu ama asıl mesele tüm özelliklere sahip ve akımı taşıyabilecek malzemeyi bulmaktı. İndiyum Kalay Oksit şeffaf olduğu için kullanıldı, ancak esnek olmadığı için hücrenin sert kalması gerekiyordu.
2017 yılında, MIT’den araştırmacılar, grafeni bir güneş piline başarıyla uygulamayı başardılar. Grafen güneş hücresini Alüminyum ve İndiyum Kalay Oksitten yapılmış diğerleriyle karşılaştırdıklarında, ITO hücresi kadar iyi ve mevcut yoğunluklar ve güç dönüştürme verimliliği açısından alüminyumdan biraz daha kötü olduğunu gördüler. Fakat zaten transparan bir hücrenin alüminyum bazlı opak bir hücreden düşük bir performans göstermesi beklenir.
Elektriksel özellikleri çığır açmasa da her türlü yüzeye (araba, elbise, kağıt, cep telefonu vb.) takılabilen esnek ve şeffaf bir güneş pili geliştirildi. Dahası, bilim insanları teoride mümkün olan grafen güneş pillerinin yağmur damlalarından enerji üretip üretemeyeceğini araştırmaya başladı.
Ayrıca bakınız: Güneş Pillerinde Grafen Kullanımı
Grafenle geliştirilmiş Li-ion piller, giyilebilir elektronik cihazlarda kullanılabilmesi için daha uzun ömür, daha yüksek kapasite ve daha hızlı şarj süresinin yanı sıra esneklik ve hafiflik gibi inanılmaz özellikler gösterir.
Ayrıca bakınız: Lityum İyon vs. Grafen Bataryalar
Nükleer santrallerde reaktörleri soğutmak için kullanılan ağır hidrojenli suyun hem üretimi maliyetlidir hem de üretim sırasında bir milyon ton CO2 emisyonuna neden olur. Manchester Üniversitesi’nden araştırmacılar, ağır su üretmek için daha yeşil ve düşük maliyetli bir yöntem olduğunu keşfettiler: grafen membranlar. Ekip lideri Dr. Lozada-Hidalgo, bu yeniliğin son derece önemli olduğuna ve endüstrinin yeni teknolojilere karşı şüphelerine rağmen nükleer endüstriye girişinin yakında olacağına inanıyor.
Ayrıca bakınız: Nükleer Santrallerde Grafen
Seebeck etkisi, birbirinden farklı iki iletken (veya yarı iletken) maddeden birine ısı verilmesi ve elektronların sıcak alandan soğuk alana hareket ettirilmesiyle elektrik üretilmesinde oluşan termoelektrik etki olarak tanımlanır. Fakat bu yöntemle üretilen enerji gerçekten küçüktür ve genellikle mikrovolt seviyesindedir Yine de motorların ısıya dönüştürerek boşa harcadığı enerjide kullanılabileceği düşünülmektedir. Grafen, Stronsiyum Titanat tarafından oluşturulan Seebeck etkisini neredeyse 5 kata kadar artırmak için kullanılabilir.
Grafenin fiziksel özellikleri o kadar ilginç ve benzersiz ki, büyük su moleküllerinin geçmesine izin verirken camdan bile sızabilecek Helyum moleküllerini durdurur. Manchester Üniversitesi’nden Andre Geim (Grafenin mucitlerinden biri) ve Rahul Nair, geliştirdikleri grafen membranla bir şişe votkayı kapatmayı denediler ve grafenin etanolü oda sıcaklığında damıtma için gerekli vakum olmadan bile etkili bir şekilde damıtabileceğini keşfettiler. Bu yöntem alkollü içeceklerde, yakıtta, su arıtmada vb. kullanılabilir.
6. Yakıt Hücrelerinde Grafen
En küçük atom olarak bilinen hidrojen atomları bile grafenden geçemez. Bir diğer araştırmada Sir Andre Geim ve ekibi, protonların grafen tarafından engellenip engellenmeyeceğini test etti. Şaşırtıcı bir şekilde, protonlar grafenden geçebildi. Bu özellik, dayanıklılığı ve verimliliği azaltan yakıt hücrelerinde büyük bir sorun olan yakıt geçişini düşürerek yakıt hücrelerinin performansını artıracaktır.
Grafenin Tıpta Uygulamaları
Fonksiyonlu grafen, kanser hastaları için kemoterapi ilaçlarını tümörlere taşımak için kullanılabilir. Grafen bazlı taşıyıcılar, kanser hücrelerini daha iyi hedefler ve etkilenen sağlıklı hücrelerin toksisitesini azaltır. İlaç dağılımı kanser tedavisi ile sınırlı değildir, ilhitap önleyici ilaçlar da grafen ve kitosan kombinasyonları ile verilmiş ve umut verici sonuçlar alınmıştır.
Ayrıca bakınız: Tıpta Grafen Uygulamaları
Grafen ayrıca hastalığın erken evrelerinde kanser hücrelerini tespit edebilir. Dahası, tümör oluşumuna müdahale ederek veya kanser hücrelerinin ölümüne yol açan otofajiyi sağlayarak birçok kanser türünde tümör büyümelerini durdurabilir.
Gen iletimi, yabancı bir DNA’yı hücrelere taşıyarak bazı genetik hastalıkları iyileştirmek için kullanılan bir yöntemdir. Polietilenimin ile modifiye edilmiş grafen oksit bu amaçlar için kullanılabilir, ilaç verme durumunda olduğu gibi düşük sitotoksisite göstermesi beklenir.
Fototermal terapi (PTT), vücudun hedeflenen bölgesindeki anormal hücreleri, bu hücreleri tahrip edebilen ısı yaratan özel bir maddeye ışınlayarak ortadan kaldırmak için kullanılan bir yaklaşımdır. Grafen oksit, PTT’nin etkinliğini çeşitli yollarla artırır. Birincisi, aynı anda PTT’ye maruz kalırken tümör hücrelerine kemoterapötik ilaçları taşımak için kullanılabilir. Kemoterapi ve PTT’yi bu şekilde birleştirmek, bu yaklaşımlardan birini tek başına kullanmaktan çok daha etkilidir. PTT sırasında kanser hücrelerinin biyo-görüntülenmesi için indirgenmiş grafen oksit (QD-CRGO) nanokompozit kullanılabilir. Dahası, Texas Tech ve Texas A&M Üniversitesi’nden bir grup bilim insanı araştırmalarında, beyin kanserinde PTT kullanımı için bir platform olarak biyouyumlu porfirin ile işlevselleştirilmiş grafen oksidin kullanılmasının, tek başına PTT’den daha fazla kanser hücresi öldürdüğünü ve sağlıklı hücrelere zarar vermediğini gösterdi.
Bath Üniversitesi’nden bilim insanları şu anda kullanılan kan şekeri testlerinin aksine cildi delmeyen bir yöntem geliştirdiler. Bir grafen sensörü içeren bu yöntem, en az bir kıl folikülü içeren küçük bir alanda kullanılabilir. Glikozu hücreler arasında bulunan sıvıdan çekerek tespit eder. Bu sadece ağrılı kan şekeri izleme yöntemlerini sona erdirmekle kalmaz, aynı zamanda sonuçların doğruluğunu da artırması beklenir.
Grafen membranların kullanım alanları yalnızca enerji, nükleer ve gıda endüstrilerinden ibaret değildir. MIT’den bir grup araştırmacı, grafenin kanı; atıklardan, ilaçlardan ve kimyasallardan filtrelemek için de kullanılabileceğini gösterdi. Grafenin bu durumda üstünlüğü, geleneksel membranlardan 20 kat daha ince olması ve hastalar için diyalizde geçirilen sürenin önemli ölçüde azalmasını sağlamasıdır.
Bir kalsiyum apatit formu olan hidroksiapatit, dental alanında kemiklerin yeniden oluşmasında kullanılan sentetik kemik malzemesidir. Hidroksiapatit ve Kitosan ile birleştirilen grafen, tek başına HAp ile karşılaştırıldığında malzemenin mukavemetinde, korozyon direncinde, esnekliğinde, mekanik ve östeojenik özelliklerinde artış gözlenmiştir.
Grafenin iyileştirebileceği tek doku kemikler değildir. Bazı grafen formlarının, insan osteoblastları ve mekanizma hücreleri ile uyumlu olduğu ve hücrelerin fizyolojik mikro çevresi ile benzer özellikler gösterdiği saptanmıştır. Bu yöntemle büyütülen hücreler, daha iyi büyüme, çoğalma ve ayrışma özelliği gösterir. Kök hücreler, nöronal bozuklukları veya nörodejeneratif hastalıkları olan kişilerin yaşam koşullarını iyileştirmek için dokuların yeniden yapılandırılmasında özellikle önemlidir.
UV sensörleri, cilt problemlerine ve hatta kansere yol açabilecek tehlikeli ultraviyole radyasyon seviyelerini tespit etmek için kullanılır. Bununla birlikte, UV sensörler ayrıca askeri, optik iletişim ve çevre gözlemleme alanlarında da kullanılırlar. Grafen tek başına yüksek bir ışık duyarlılığı göstermeyebilir, ancak diğer malzemelerle birleştirildiğinde, yakın gelecekte giyilebilir elektronik gibi teknolojilere yol açacak esnek, şeffaf, çevre dostu ve düşük maliyetli UV sensörlerinde kullanılabilirler.
Beyin hakkındaki gizemler henüz tam olarak açığa çıkmadı. Grafen tabanlı bir teknoloji, bilim insanlarının beynin elektriksel aktivitesini kaydederek bilinmeyenlerin çoğunu ortaya çıkarmasına izin verebilir. Bu yöntemle üretilen yeni bir cihaz, eski teknolojinin sınırlarının üstündeki frekansları algılayabiliyor ve beynin işleyişine müdahale etmiyor. Beynin nasıl çalıştığına dair araştırmanın yanı sıra, teknoloji bilim insanlarının epilepsi nöbetlerinin arkasındaki nedenleri anlamalarına ve hastalar için tedaviler geliştirmelerine yardımcı olabilir. Dahası, beyin hakkında daha fazla şey keşfetmek, protez uzuvların kontrolü dahil birçok alanda kullanılan yeni beyin-bilgisayar arayüzlerinin geliştirilmesine yol açabilir.
Tüm gelişmelere rağmen halen mevcut HIV teşhis yöntemlerinde birçok dezavantaj vardır. Hastaya bulaştıktan yaklaşık bir ay sonra vücuttaki antikorları veya virüsün kendisini tespit edebilirler ancak bu yöntemlerin uygulanması biraz zaman alır ve antikor yöntemine göre daha pahalıdır. İspanyol Ulusal Araştırma Konseyi, Altın Nanopartiküller içeren silikon veya grafenden yapılmış, HIV üzerinde bulunan bir antijen olan p24’ü hedefleyen bir biyosensör geliştirdi. Bu yeni yöntem, virüsü enfekte olduktan yalnızca bir hafta sonra ve mevcut testlerin fark edebileceğinden 100.000 kat daha düşük seviyelerde tespit edebiliyor. Ayrıca, testin sonuçları test edildikten sonraki 5 saat içinde elde ediliyor.
Grafenin avantajlarından biri, minimum miktarda maddeyi tespit etme kabiliyetidir. Büyük hacimdeki tek bir molekül bile onunla tespit edilebilir. Grafen, grafen oksit veya indirgenmiş grafen oksitten yapılan biyosensörler, DNA, ATP, dopamin, oligonükleotidler, trombin ve farklı atomları tespit ederken ultra hassas özellikler gösterir. Hali hazırda grafen ile yapılmış tıbbi sensörler satan birkaç tıbbi şirket bulunmaktadır.
Grafen, katmanları arasında bulunan hücre zarlarına zarar vererek bakteri, virüs ve mantar gibi mikroorganizmaların oluşumunu önlediği için muhteşem bir bakteri öldürücü maddedir. Grafen, Grafen Oksit ve indirgenmiş Grafen Oksit’in farklı türevleriyle karşılaştırıldığında en iyi antibakteriyel etkileri gösterir. GO aynı zamanda antibakteriyel özellikleri daha da artırmak için gümüş nanopartiküller içeren bir bileşik olarak da kullanılabilir.
Grafen, prezervatifte istenen tüm özelliklere sahiptir: Esnek, ekstra güçlü ve son derece incedir. Manchester Üniversitesi’nden araştırmacılar, grafen ve lateksten oluşan bir “süper prezervatif” geliştirmek için çalıştılar. Araştırma, Bill ve Melinda Gates Vakfı da dahil olmak üzere birçok fon aldı.
Bir grup Çinli bilim insanı, işaret dilini metne ve konuşma diline çevirebilen giyilebilir, biyo-entegre bir cihaz geliştirdi. Cihaz, grafenin inanılmaz iletkenlik ve esneklik özelliklerini kullanmakta.
X ışınlarının aksine vücut taraması için kullanılabilen T dalgaları insan vücuduna zararsızdır. Ancak, bunun bir püf noktası var. T dalgalarının veya THZ radyasyonunun hem tespit edilmesi hem de üretilmesi zordur. İyi haber şu ki, bazı modifikasyonların ve diğer malzemelerin yardımıyla CVD grafen, THZ radyasyonunu başarılı bir şekilde tespit edebilir. Bu sadece daha güvenli vücut taramalarına değil, aynı zamanda gelecekte inanılmaz derecede daha hızlı internet bağlantılarına da umut vadeder.
Grafenin Elektronikte Uygulamaları
MIT‘deki araştırmacılar, ışığın grafenin yüzeyine çarptığında yavaşladığını ve fotonların grafen üzerinde hareket ederken elektron hızına çok yakın bir hızda hareket etmeye başladığını keşfettiler. Bu tesadüf, elektronların ışık bariyerini aşmasını sağlıyor ve ışımaya neden oluyor. Bu yöntemin floresan veya LED’ler gibi geleneksel ışık üretme yöntemlerine göre avantajı, daha verimli, daha hızlı, kompakt ve kontrol edilebilir olması ve grafenden ışık üretmenin daha küçük, hızlı ve verimli bilgisayar çiplerinin geliştirilmesinde önemli bir kilometre taşı olacağını gösteriyor.
Ayrıca bakınız: Elektronikte Grafen Kullanımı
Silikonun yerini grafen ile değiştiren yeni süpertransistörler, günümüz teknolojisine göre bilgisayarların hızını bin kata kadar artırabiliyor. Bilgisayarların hızının artırılması, blok zinciri, dış uzay simülasyonları, robotlar ve borsaya katkıda bulunmasının haricinde birçok teknolojinin geliştirilebilmesi için çok önemli bir adım olarak görülüyor.
En korkulan elektronik cihaz durumlarından biri bu cihazların suya düşürülmesidir. Cihazı sıkıca oturmuş vidalarla sıkıştırmak yerine grafen bu soruna harika bir çözüm sunuyor. Iowa Eyalet Üniversitesi’nden mühendisler, grafenin şeffaf, güçlü ve iletken yapısından dolayı cihazın devrelerini 3 boyutlu yazıcıda grafen kullanarak üretiyor. Grafen pulları belirli bir düzende oluşturulup yalıtkan bağlayıcı ile birleştirilerek iletkenliği artırılıyor. Çoğu uygulama alanında olduğu gibi grafen bu soruna yine harika bir çözüm getiriyor.
Araştırmacılar, giyilebilir cihazlara güç sağlamanın yeni yollarını arıyor. Bunu yapmanın olağanüstü yollarından biri, grafenli bir kumaş üzerine basılmış esnek pillerden geçiyor. Bu şekilde insanlar bataryalarını giyebilecek ve telefon gibi elektronik cihazlarını giydikleri bu kıyafetle şarj edebilecek. Bu başarılabilirse çevre dostu ve enerji depolayabilen akıllı bir e-tekstil olacaktır. Bu harika fikrin hayata geçirilmesiyle birlikte taşımak zorunda kaldığımız taşınabilir şarj cihazları tarihe karışacak.
İndiyum kalay oksit (ITO), akıllı telefonlar, tabletler ve bilgisayarlarda bulunan şeffaf iletken maddedir. Rice Üniversitesi’nden araştırmacılar, dokunmatik ekranlarda kullanılmak üzere grafen bazlı ince bir film geliştirdiler. Grafen esaslı ince filmin, daha düşük direnç ve daha yüksek şeffaflığa sahip olup performans açısından ITO ve diğer tüm malzemeleri geride bıraktığı saptanmıştır. Bu nedenle grafen, indiyum kalay oksit için iyi bir alternatif olarak görülmekte.
Grafenin standart bir malzeme haline gelmesinden en çok faydalanacak sektörlerden biri de teknoloji dünyası olacak. Akıllı telefonlar için grafen kullanımı büyük bir adım olacaktır.
Son zamanlarda Çin menşeili bir şirket, grafen dokunmatik ekranlı bükülebilir bir akıllı telefon üretti. Tek katmandan oluşan grafen güçlü, hafif, transparan ve oldukça iletken olduğu için akıllı telefonun ihtiyaç duyduğu tüm özellikleri karşılıyor. Çinli şirketin akıllı telefonu tamamen ortadan katlanabiliyor ve sadece 200 gram ağırlığında, yani kullanım için oldukça uygun. Ancak grafen üretimi akıllı telefonlarda kullanılan diğer malzemelere göre endüstriyel ölçekte pahalıdır. Araştırmacılar bu sebeple daha düşük maliyetlerle grafen üretmenin yollarını arıyorlar. Bu sorun ve diğerleri çözüldüğünde, gelecekte eski telefonların yerini bu esnek akıllı telefonlara bırakacak gibi görünüyor.
Çevre dostu yöntemler ve en düşük maliyetle en yüksek kalitede Grafen üreten Nanografi’nin Greengraphene projesini keşfedin:
Nanografi’nin EU Horizon2020 kazanan projesi: GREENGRAPHENE
Grafen genellikle kullanım ve kontrol edilebilirlik açısından manyetik bir malzeme olarak görülmez. 2015 yılında ABD Deniz Araştırma Laboratuvarı araştırmacıları, grafeni güvenilir ve kontrol edilebilir bir elektromanyetik malzemeye dönüştürmenin bir yolunu buldular. Bu yenilik sabit disklerde kullanılırsa, bugün kullandığımızdan neredeyse bir milyon kat daha büyük bir kapasiteye sahip olunması bekleniyor.
Bir araştırma ekibi, esnek veya elastik robotik parçaları oluşturulurken çok sayıda uygulamada kullanılabilmesi için kızılötesi ışığa duyarlı bir jel geliştirdi. Bu yöntemle oluşturulan yılan benzeri robotlar, dışarıdan gelen herhangi bir kuvvet olmaksızın şeklini değiştirebiliyor. Bu teknolojinin gelecekteki uygulamaları, arama-kurtarmafdan tıbbi operasyonlara kadar değişebilir.
Bilim adamları, grafenin süper iletken bir malzeme olarak da kullanılabileceğini keşfettiler. İki katmanlı bir grafen elektronları herhangi bir dirençle karşılaşmadan iletebilir. Bu, grafenin katmanlarının “mucize açı” da denilen 1,1°’lik bir açıyla bükülmesi ile gerçekleşir. Süper iletken malzemelerin çoğu, özelliklerini mutlak sıfıra yakın sıcaklıklarda gösterir. Yüksek sıcaklıklarda çalışan süper iletken malzemeler bile yaklaşık -140 °C’de çalışabilir. Başka bir deyişle, bu süper iletken malzemelerin soğuması için çok yüksek enerjiler gerekir. Grafen, oda sıcaklığına yakın sıcaklıklarda süper iletken bir malzeme olarak kullanılabilirse, birçok uygulama alanı için büyük bir devrim olacaktır.
Zaman geçtikçe enerji ve güç ihtiyacı arttığı için araştırmacılar optik iletişim için yeni bir malzeme üzerinde çalışıyorlar. Farklı üniversitelerin işbirliği ile yürütülen bir araştırmada, grafenin silikon ile entegre edilmesinin mevcut silikonun fotonik teknolojisini artırabileceğini göstermiştir. Peki, bu nasıl oluyor? Çünkü grafen ile yapılan cihazlar daha ucuz, daha basit ve yüksek ölçekli dalga boylarında çalışıyor. Görünüşe göre grafen, düşük enerjili bir optik telekomünikasyon ve diğer birçok optik sistem için uygun bir malzeme olacak.
Grafen, süper özelliklerinden dolayı endüstri ve bilimde büyük gelişmelere sebep olmuştur. Araştırmacılar optik sensörlerin boyutunu küçültmek için bile grafen kullanmakta. Son zamanlarda, Barselona’daki Fotonik Bilimler Enstitüsü (ICFO), Graphene Flagship ekibinin işbirliği ile birçok araştırmacı tarafından imkansız olduğu düşünülen ışığın tek bir atom kalınlığına indirgenmesini sağlayan bir çalışma yürüttü. Bu keşif, ultra küçük optik sensörler ve anahtarlarda büyük bir gelişmeye yol açacak.
Grafenin ilk pratik ve gerçek uygulamalarından biri güvenlik kartlarıydı. Birçok mağazanın kullandığı hacimli sensörler yerine grafen ile yapılan sensörler daha küçük, daha estetik, devreye zarar vermeden bükülebiliyor ve etiket başına sadece birkaç kuruşa mal oluyor.
Grafen, su ve oksijen transferini engellediği için kaplama malzemesi olarak da kullanılabilir. Grafen membranlar, yiyecek ve ilaçları daha uzun süre taze tutacak gıda veya ilaç ambalajlarında kullanılabilir. Basit bir uygulama gibi görünebilir, ancak her gün tonla yiyeceğin israf edilmesini engelleyebilir.
Normalde, su arıtma basit bir süreç değildir ve sürecin fizibilitesi suyun ne kadar kirlendiğine bağlıdır. Avustralyalı bir bilim adamı, suyu bir adımda arıtmak için düşük maliyetli bir teknik buldu. Filtre olarak ‘GrapHair’ olarak da adlandırılan soya bazlı grafen kullanmayı denedi. Bu filtre, en kirli suyu bile içilebilir hale getirebiliyor. Ayrıca diğer yöntemlere göre daha verimli, daha ucuz ve çevre dostu.
Ayrıca bakınız: Su Arıtmada Grafen
Gezegende bulunan toplam suyun yaklaşık% 97,5’i tuzludur. Ne kadar kuyu açarsak açalım, toplamın sadece% 2,5’i tatlı su. Grafen kullanılan arıtma filtreleri bu noktada çok iyi sonuç veriyor. Manchester Üniversitesi, daha yüksek yoğunluğa sahip olan ve su parçacıklarının geçmesine izin veren ancak tuzları engelleyen bir filtre yapmak için grafeni kullandı.
Grafen, sensörler için harika bir malzemedir. Grafenin benzersiz yapısı sayesinde mikro boyutlu sensörler üretilebilir. Bir molekülün çevre için tehlikeli olup olmadığı tespit edilebilir. Bu sensörler gıda endüstrisinde, özellikle mahsullerin korunmasında kullanılabilir. Çiftçiler, mahsul için tehlikeli ve zararlı gazları tespit edebilir ve hatta atmosferik şartlara, neme ya da bitkilerin su ihtiyacına göre en iyi ürünün nerede yetişeceğini saptayabilir.
ABD Rice Üniversitesi tarafından yapılan araştırmalar, lazerle indüklenen grafenin tahta, ekmek, hindistancevizi vb. gibi çeşitli maddelere uygulanabileceğini göstermiştir. Üzerinde mürekkeple basılmış desenler bulunan bir madde gibi görünebilir, ancak değildir. Lazer, malzemeyi karbonlaştırır ve karbonlanmış malzeme grafene dönüştürülür. İstenilen herhangi bir model bu teknikle elde edilebilir. Gıda güvenliği ile ilgili sorunlar bu teknikle aşılabilir.
Sporda Grafenin Uygulamaları
Grafen spor ayakkabı? Evet, bu durumda tamamen kullanılmasa da, diğer kompozit malzemeler burada grafenden yararlanır. Aslında saf grafenden yapılmış bir tabanın yüzlerce yıl dayanabileceği iddia ediliyor. Manchester Üniversitesi ve spor markası Inov-8, dış tabanların mukavemet ve esneklik özelliklerini %50 artırmak için grafen kullanarak bir ayakkabı geliştirdi. Bu ayakkabılar daha dayanıklı ve kemiklere ya da eklemlere zarar verebilecek darbeleri emebiliyorlar.
İdeal bir kask güçlü, darbeye dayanıklı, dayanıklı, rahat ve hafif olmalıdır. Grafen inanılmaz derecede güçlü, hafif ve esnektir. Kurşungeçirmez yeleklerde bile kullanıldığından darbelere kesinlikle direnebilir. Bu özellikleri ile grafen ticari olarak motosiklet kasklarında kullanılmaktadır.
Grafen ayrıca akıllı lastikler ve spor bisiklet bileşenleri yapmak için kullanılır. Bisikletin lastiklerine grafen eklemek delinme direncini ve hızını arttırır, yuvarlanma direncini azaltır ve lastikleri daha hafif, daha güçlü, daha hızlı ve daha dayanıklı hale getirir.
Kumaşlarda grafen liflerinin kullanılması, ısıyı koruyabilen ve ultraviyole ışınları engelleyebilen antibakteriyel ve anti-statik giysiler üretilmesini sağlar. Bu kumaşlar, dış mekan spor kıyafetleri, toprak bakterilerini uzaklaştıran çocuklar için pijamalar ve hatta yüzeyinde bakteri gelişimini önleyici kaplamalar bulunan mobilyalar oluşturmak için kullanılabilir.
Grafen, servis hızını ve dengesini artırırken raketin enerji dağılımını ve ağırlığını iyileştirebilir. Tenis ekipmanı üreticisi Head, Novak Djokovic ve Sascha Zverev gibi tenis yıldızları tarafından halihazırda kullanılan “Graphene 360” adlı, grafen ile geliştirilmiş, piyasada bulunan bir dizi raket geliştirdi.
Grafen elektronik dövme (GET), Teksas Üniversitesi’ndeki bilim adamları tarafından geliştirilmiştir. Birincisi, neme karşı daha dirençlidirler, daha fazla elastikiyete -% 40’a kadar büyüme ve küçülme kabiliyeti- sahiptirler. 463 ± 30 nm toplam kalınlığa ve yaklaşık% 85 optik şeffaflığa sahiptirler. İkinci bir deri gibi davranırlar. Bu dövmeler kalp atış hızını, sıcaklığı, hidrasyon seviyelerini, oksijen doygunluğunu ve hatta UV’ye maruz kalma seviyesini izlemek için kullanılabilir. Uygulama alanları fitness’tan ilaç takibine kadar değişebilir.
Grafenin Diğer Uygulamaları
Çin’deki araştırmacılar, saf hali bile harika özelliklere sahip olan ipeği daha da geliştirmek için bir araştırma yaptılar. İpekböcekleri beyaz dut yapraklarını yerler. Araştırmacılar yapraklara yüzde 0,2 grafen içeren bir çözelti püskürttüler ve ipekböceklerinin yaprakları yemesine izin verdiler. Bulgular umut vericiydi çünkü grafen püskürtülmüş yapraklarla beslenen ipekböcekleri, normal bir ipekböceğinin verebileceğinden on kat fazla ipek üretiyor. Grafenin ne kadarının ipekböcekleri tarafından sindirildiği belirsizken, bu çalışma son yılların gündeminde olan akıllı giyim üzerine olumlu bir etki yarattı.
Gün geçtikçe grafenin kullanıma alanları da genişlemekte. Grafenin kullanım alanları içerisinde önemli bir potansiyel barındıran bir sektör de inşaattır çünkü grafen güçlü ve aynı zamanda hafiftir ve inşaat için mükemmeldir. Çelik yerine kullanılabilir, ancak güç ve ağırlık tek parametreler değildir. Grafenin ana sorunu, çatlağın grafende çok hızlı yayılması ve feci arızalara neden olabilmesidir. Araştırmacılar, grafeni inşaatta kullanmanın yollarını bulmaya çalışıyorlar. Exeter Üniversitesi’nden bir grup araştırmacı, takviye malzemesi olarak çimentoda grafeni kullandı ve test etti. Sonuç olarak 2,5 kat daha güçlü ve 4 kat daha az su geçirgen beton elde edildi, bu da grafenin inşaatta harika bir takviye malzemesi olabileceğini kanıtladı.
Ayrıca bakınız: İnşaat Sektöründe Grafen Kullanımı
İki grafen levha “sihirli açı”ya denk gelecek şekilde ayarlandığında grafen bir süper iletken veya yalıtkan malzeme olarak kullanılabilir. Arabaların, gemilerin veya uçakların metal parçalarının çoğu paslanma sorunu yaşıyor. Grafen boya ile birleştirildiğinde, paslanmaz yüzeyler oluşturmak için harika bir yalıtım malzemesi olabilir. Diğer bir uygulama, tuğla ve taşların kaplanması olabilir. Bu şekilde su geçirmez evler yapılabilir.
Hoparlör, havadaki bir membranı titreştirerek elektriği sese dönüştürür. Grafen, hafif ve büyük sertlikte membranlar yapmak için kullanılır. Ayrıca kulaklıklar, grafenle güçlendirilmiş küçük bir diyafram kullanır. ORA Sound şirketi tarafından geliştirilen bir kulaklık olan GrapheneQ, daha hafif ve küçük olmasının yanı sıra aynı zamanda daha az enerji ile daha yüksek ve kaliteli seslere ulaşabilir.
Olağanüstü özellikleri, ultraviyole ve kızılötesi ışınlara olan hassasiyeti ile grafen, dijital fotoğrafçılığı ve fotoreseptör ya da optik modülatör kullanan birçok alanı daha ileri taşıyabilecek bir malzeme. Kameraların grafen ve kuantum nokta ile geliştirilmiş sensörleri hem şimdiye kadar üretilen herhangi bir küçük sensörden çok daha yüksek çözünürlük seviyelerine ulaşıyor hem de daha küçük ve hafif.
Grafenin olağanüstü gücü ve sertliği esnekliği ile birlikte düşünüldüğünde bu konumu onu çarpmalardan hasar almayan araçların üretilmesinde mükemmel bir aday yapıyor. Böyle bir teknoloji sayesinde trafik kazalarından kaynaklanan ölümler büyük ölçüde önlenebilir. Önümüzdeki on yıl içinde showroomlarda görebileceğimiz grafen arabaların da daha ucuz ve daha hafif olması bekleniyor.
İngiltere’den bilim insanları kanatların karbon fiber kaplamasında grafen kullanılan bir uçak tasarladı. Tasarlanan bu uçak, tam adı ile Prospero, kanatları geliştirilen kompozitin sadece tek katmanı ile kaplandığı için çok daha hafif. Daha az yakıt tüketiyor, darbeye daha dirençli ve ayrıca çevreye olan maliyeti de daha düşük.
Ayrıca bakınız: Havacılıkta Grafen Kullanımı
Her ressam bunu çok iyi bilir: Nem, resmin bir numaralı düşmanıdır. Graphenstone adında bir şirket grafen kullanarak boyalarla ilgili yaşanan sorunlara çözümler buluyor. Peki sonuçlar? Grafen kullanımı ile ışık boyadan çok daha iyi yansıyor, daha koruyucu bir hale geliyor ve metrekare başına 120 gram karbondioksit tüketiyor. Bu boya ayrıca metallerle temas halinde ise korozyonu da önlüyor.
Kevlar; kurşun geçirmez yelek, kask ve koruyucu kıyafet ve hatta silah imalatında kullanılır. Ancak grafenin daha fazla işlenebilirliği vardır ve kaza durumunda ve kan dolaşımıyla temas halinde tıbbi olarak daha güvenlidir. Dahası, Kevlar ve grafen kombinasyonu ile üretilen kompozitler aşınmaya karşı daha dirençlidir ve tek başına Kevlar ile karşılaştırıldığında elyafların korunması için ısı emilimini arttırır.
Ayrıca bakınız: Askeri Amaçlı Grafen Kullanımı
Grafen için gündemde olan kullanım alanlarından biri de silah endüstrisine yöneliktir. Özellikle, kullanışlılığı zırhlara ve korumaya yönelik olacaktır. Kask, kurşun geçirmez yelek ve daha birçok aksesuar yapımında kullanılabilir. Aslında, polis güçlerinin ve ordularının geleceği için kritik bir malzeme olabilir.
Son yıllardaki en büyük gelişmelerden biri de termal ve kızılötesi görüşe izin veren grafen lenslerin geliştirilmesidir. Grafen, kullanıcıya kızılötesi ve termal görüş sağlayan dahili bir kamera ile bu tür ultra ince cihazların üretilmesine izin verir. Şimdiye kadar sadece bilim kurgu filmlerinde gördüğümüz bir şey gerçeğe dönüşüyor…
Endüstriyel makineler çoğunlukla sürtünmeden muzdariptir çünkü sürtünme makinelerin dayanıklılığını, gücünü, verimini ve çalışma ömrünü olumsuz etkiler. Bu etkileri en aza indirmek için katı veya sıvı yağlayıcılar kullanılır. Son zamanlarda sayısız potansiyel uygulama alanına sahip olan grafen bu konuda da öne çıkmaya başladı. Peki neden grafen? Çünkü geleneksel malzemelere kıyasla mükemmel sürtünme ve aşınma özellikleri sunar. Aynı zamanda katı veya sıvı yağlayıcı olarak da kullanılabilir. Ek olarak, büyük bir kimyasal stabiliteye, pürüzsüz ve yoğun bir şekilde paketlenmiş yüzeye sahip olması, grafeni harika bir yağlayıcı malzeme yapıyor.
Grafenin uygulama alanlarından biri de cam kaplama malzemesi olarak kullanılabilmesidir. Cam, korozyona karşı yüksek dirençli bir malzeme olmasına rağmen, yüksek nem veya aşırı pH değerleri gibi bazı koşullar altında korozyona uğrayabilir. Ayrıca, camın dayanıklılığı, ilaç veya optik endüstrisi gibi bazı alanlarda hayati öneme sahip olabilir. Yüksek şeffaflığa ve yüksek kimyasal sabiliteye sahip grafen, camın korunması için umut verici bir malzeme olabilir. Korozyon, oksidasyon, elektromanyetik radyasyon gibi her türlü muhtemel bozunmayı önler.
Bilim adamları, insan sağlığı için çok tehlikeli olduğu için radyasyonu minimumda tutmaya çalışıyorlar. Bu amaçla, radyasyona karşı koruyucu malzeme olarak çeşitli alternatifler var ancak koruyuculuğu etkileyen birçok parametre bulunmakta. Grafen, zayıf bir radyasyon emici olarak bilinir, ancak bilim adamları, grafenin çok katmanlı formda, levha halinde kullanıldığında harika bir koruyucu malzeme olabileceğini keşfettiler. Grafen, düşük üretim maliyeti, hafifliği ve diğer koruyucu malzemelerle karşılaştırıldığında yüksek verimliliği sayesinde bu amaç için olağanüstü bir malzemedir.
Petrol veya gaz taşımak için kullanılan su altı boruları, CO2 ve suyun bazen dış katmanlardan geçebilmesinden dolayı zamanla korozyona uğrar. Bunları onarmak maliyetlidir ve korozyon nedeniyle kırılırlarsa, su canlıları için tehlike oluşturan toksik maddeler serbest kalır. Manchester Üniversitesi’nden araştırmacılar ve teknoloji firması TWI, grafen levhalar ile bir kaplama geliştirdi ve bunu boruların deniz altında maruz kalacağı sıcaklık ve basınç koşulları altında test etti. Sonuç olarak, CO2 ve diğer aşındırıcı maddelerin geçirgenliği %90 oranında azaldı.
PZT (kurşun zirkonat titanat), yüksek sıcaklık ve hassasiyet uygulamalarında yaygın olarak kullanılan kristalimsi bir perovskit yapıya sahip piezoelektrik bir seramik malzemedir. PZT tabanlı piezosemikler, mükemmel piezoelektrik özellikler gösterdiği için farklı sensor ve aktüatör tasarımlarında dikkat çekmiştir.
Kurşun zirkonat titanat nano tozlarının / mikron tozlarının özellikleri:
PZT, borular, halkalar, diskler, plakalar ve yarım küre şeklinde hassas bir şekilde boyutlandırılabilen işlenebilir bir seramiktir. Materyal aynı zamanda, aynı şekilde şekillendirilmiş ve sıkıştırılmış olarak, birlikte pişirilen bimorflar ve çok katmanlı aktüatörler dâhil olmak üzere karmaşık bileşenlerle net şekilde şekillendirilebildiği için biçimlendirme açısından de çok yönlüdür. Boyutlar santimetre ila mikron ila nanometre arasında değişmektedir. Elektrot seçenekleri arasında nikel-krom, altın, kalay, alüminyum ve vanadyum yakıtlı gümüş, elektriksiz nikel, püskürtülmüş veya biriktirilmiş vakum bulunur.
Kurşun zirkonat titanat nano taneciklerinin, elektriksel bir şarjla uygulandığında mekanik olarak sıkıştırıldığında veya titreşirken, elektriksel bir yük üretme özelliklerini pasif algılamaya çok elverişlidir. PZT malzemeleri ve genel olarak piezoelektrik malzemeleri benzersiz birçok özelliğe sahiptir. Basitçe, bir piezoelektrik malzeme deforme olursa, piezoelektrik etki olarak bilinen şeyde bir elektrik yükü üretilir. Bu nedenle, bu malzeme, eski bataryanın değiştirilmesinin çok pahalı ya da eşit olduğu gömülü yapısal sağlık izleme (SHM) sistemi ve mikro elektromekanik sistemler (MEMS’ler) gibi modern düşük güçlü cihazların “sınırlı pil ömrü” sorununa çözüm olabilir.
Kurşun zirkonat titanat (PZT) nano tozları kullanımı:
Hidrolik kıvırma makinesi, bir hortumun en sınırındaki bir bağlantı parçalısıyla birlikte kıvırma veya emniyete almak için üreticileri tarafından tasarlanan ve kullanılan bir makine olarak açıklanabilir. Bu, hem esnek olmayan hem de bükülebilir hortum ve boru parçalarına sahip, bozulabilir metalik armatürlerin eki olarak anlaşılabilir.
Bu, bir kablonun iki ucunun (hortum olarak da adlandırılabilir) bir kısmını kıvırarak veya her iki ucunu birleştirerek yapılır.Teknolojide, bu araçları kullanma gereksinimi olan bireylerin sorununu ortadan kaldıran gelişmeler, modern dünyaya önemli bir avantaj getirmiştir. Tasarlanan modern aletlerin çoğu son derece hafif ve kompakttır (örneğin el hidrolik kıvırma aleti). Bu daha fazla kullanım ve kullanım kolaylığı sağlar. Bu makineler tamamen diğer makinelerden bağımsız olabilirler. Daha hızlı kıvrılma döngüleri ve daha düzenli şekillendirme, tüm işlemlerin son derece verimli yapılmasını sağlar. Günümüzde üretilen makinelerin dayanıklılığı nedeniyle önemli bir zaman tasarrufu elde edilebilir.
Daha önce bahsedilen kullanıcılara sağladığı faydalar, makineye uygulanan (hidrolik makineyi manuel olarak pompalamak için) vücut basınçlarının azaltılması şeklindedir.
Bu, kullanıcılar için oluşacak riskleri hafifletebilir.
Madeni Para Hücreleri İçin Bir Hidrolik Kıvırma Makinesi Nasıl Çalışır?
Genel olarak, hidrolik kıvrım makinelerinin kullanıldığı anlaşılabilir; bir terminalin takılması veya bir elektrik iletkeni ile temasa geçme görevi. Elde kullanılan bir kıvırma aletinin aksine, bu makineler konektörün kapalı yüksekliğinin sabit olması gereken tam bir mekanizma döngüsünde kullanılır. Açıkça görüldüğü üzere, bunlar endüstriyel bir ortamda, örneğin fabrikalarda ve üretim hatlarında (örneğin makine mühendisliği alanı) kullanılmaya hazırdır.
Geleneksel kıvırma aletleri, hem el gücü gerektiriyordu hem de aletin basınçlandırılması için bir elektrik kuvveti kullanması gerektirdiğinden, önemli maliyetleri vardı. Teknolojik gelişmeler, bu makine sistemlerinin bazılarının şarj edilebilir pille çalışabileceğini göstermektedir.
Bu makinelerin fiziksel oranları (yani dikey ölçüm, derinlik ve genişlik), standartlara dayalı kapasite gibi tüm döngünün yapılandırma süresini ve zamanını değiştirebilir. Hortum ve montaj stillerine göre de değişir. Araçlar ve kalıplar, tanımlama ve farklılaşma aracı olarak renkle işaretlenmiştir. İlgili aksesuarlarla birlikte kullanılırlar (örnek: Hidrolik hortum). Hortumlar; sıvı, uyumluluk, fiziksel kuvvet ve ısı yoğunluğu gibi örnekleri de mevcuttur.
Üretim tesislerinde ve büyük sanayilerde (örneğin inşaat endüstrisi, kimya endüstrisi, otomobil endüstrisi ve petrol endüstrisi) kullanılan hidrolik kıvırma makineleri geniştir ve ideal olarak bir konumdan diğerine düzenli olarak taşınmazlar.
Bununla birlikte, modern zamanlarda, madeni para hücreleri gibi bazı endüstrilerde kullanılan kıvırma makineleri daha hafif bir şekilde tasarlanmıştır. Örneğin, madeni para hücreleri için kullanılan hidrolik kıvrım makineleri daha küçük boyutlarda üretilmiştir. Bu, özellikle makinelere uygulanabilecek daha düşük basınç seviyeleriyle mümkün olabilir.
Bu, birkaç genel adım kullanılarak gerçekleştirilir:
Elektrik kaynağının ve performans el kitabında belirtilen diğer ön koşulların yerine getirilmesini sağlamadan önce yeterli aşınma önleyici hidrolik yağlayıcılar kullanılmalıdır.
Uygulanan basıncın ölçüsü, operatör tarafından ölçek üzerinden düzenlenir. Uygulanan basınç, hızlanma olarak bilinir ve skala üzerindeki saat yönünde / saat yönünün tersine ayarlamalar sırasıyla hızlanma seviyelerini azaltır ve arttırır. Açma kalıbındaki dövme basıncının ve normal basıncın daha da düzenlenmesi, yağ silindirinin arkasındaki (iki) düğme ile kontrol edilebilir. Lastik hortumun genişliğine (üzerine basınç uygulanacak) göre, kalıp tabanının üzerine uygun bir kalıp (hem referans tablosu hem de ilgili kilitleme borusu ve kalıbı dikkate alınarak) monte edilmelidir.
Madeni Para Hücrelerinde Hidrolik Kıvırma Makinesi Uygulamaları
Hidrolik kıvırma makinelerinin birçok kullanım türü yukarıda kısaca belirtilmiştir. Bu makinenin uygulamalarından biri de madeni para hücrelerinin kıvrılması içindir. Bu kıvırıcılar tipik olarak, farklı kalıplar kullanılarak değişen boyutlarda olan farklı tipte bozuk para hücrelerini mühürleyebilir. Ek olarak, modern kıvırma makineleri, makineyi çok daha hafif ve daha küçük baskılar için yapan ve işlemleri kolaylaştıran çeşitli özelliklerle özel tasarımlara sahiptir.
Makineler genellikle kalıp setleri ile satılmaktadır.
Kullanıcılar ayrıca tercihlerine göre diğer özel ebatlarda ek kalıp setleri satın alma seçeneğine de sahipler. Basıncı izlemek ve kontrol etmek için göstergelerle yapılır. Kalıpların hassasiyeti ayrıca hatasız kıvrımlara da katkıda bulunacaktır. Ayrıca bazen basınç sınırlarının kontrolü için dahili bir emniyet valfine sahiptir. Bu, hasar olasılığını azaltmaya yardımcı olur. Hasar notunda, bazı makinelerde korozyon önleyici bir iç kısım bulunur ve bu durum bozuk para hücrelerinin kısa devre sonucu zarar görmesini önler. Bazı makinelerde, kıvırma tabanının üzerine yerleştirilmesi gereken alüminyum bir tepsi de bulunur ve bu durum talihsiz yağ sızıntısı olasılığını azaltmaya yardımcı olacaktır.
Bu makineler aynı zamanda sökme amacıyla değerlendirilebilir.
Makineler de genellikle, kullanıcının makineyi sorumsuzca kullanması (uygun olmayan depolama koşulları, yetersiz bakım önlemleri) sonucu, pas gibi deformasyonlar oluşabilir. Bu makinelerin tasarımı aynı zamanda, genellikle önemli düzeyde basınç tutacak şekilde modellenmemiş bir hidrolik pompa ile donatılmıştır.
Hidrolik kıvırma makinalarındaki gelişmeler, ağırlığı (cihazları manuel olarak yönetmek zorunda kalmadan) kullanıcılardan kaldırmıştır ve bundan sonra daha iyi bir sonuç elde edilmesini sağlayacaktır (günlük olarak daha fazla bağlantı). Bu nedenle, göreceli olarak değerli bir yatırım olarak değerlendirilebilir. Bununla birlikte, makineyi uygun aksesuarlarla donatan doğru üreticinin seçilmesinin sağlanması önerilir.
PROMETYUM
Prometyum, atom numarası 61 olan, periyodik cetvelin 3A grubunda lantanitlerden yapay bir elementtir.
Coryell, Marinsky ve Glendenin 1945’te iyon değiştirme kromatografisinden yararlanarak neodimyumun nötronlarla bombardımanından elde edilen ürünler ve uranyumun bölünme ürünleri üzerindeki deneyleri sonunada prometyum elementinin kimyasal tanısı ortaya çıkarıldı.
Genelde bilimsel araştırma çalışmalarında başvurulan prometyum, element kalınlığı ölçme aletlerinde bir beta kaynağı olarak işlev görmektedir. Işık hücrelerine güç kazandırdığı için bu elementten parlak materyallerin üretiminde de faydalanılır. Uzay araçları ve uydularda ilave ısı kaynağı olarak öne çıkan prometyum, radyasyon ölçüm cihazları, güdümlü füzeler, nükleer bataryalar ve atomik kalp pilleri gibi çeşitli ürünlerde kullanılmaktadır.
Güneş hücrelerinde, prometyumun ışığı yakalayıp elektrik akımına çevirmesi ile nükleer enerji pili gibi kullanılır. Bu pillerde Pm-174 izotopu kullanılır ve pillerin ömrü yaklaşık 5 senedir.
Yardımcı güç sağlayan ısı kaynağı olarak uzay sondaları ve uydularda da prometyum kullanılır.
Prometyumun yaklaşık 30 ayrı bileşiği 1940’lardan günümüze hazırlanmış, prometyumun metalik hali hakkında yeterli bilgi ise henüz bulunmamaktadır
Karbon nanotüpler kullanılarak mobil esnek telefonlar için esnek piller, karbon nanotüplü işlemciler üretilebilir.
Gürültüsüz elektronik sensör, ışık yayan organik ekran, termoakustik kulaklık gibi ekoteknolojik ürünler artık karbon nanotüpler sayesinde üretilebilir.
Çevresel olarak problemli olan stadyum tarzı ekranlarda kullanılan civa bazlı floresan lambaların yerine, 8000 saatten fazla olması beklenen ömürleri ile nanotüp bazlı lambalar kullanılabilir.
Karbon nanotüpler kapasitörlerde elektrot olarak kullanıldığında daha yüksek akım elde edilmesinde, yüksek çözünürlüklü görüntülemede ve yüzey işlemede de kullanılabilir.
Atomik kuvvet mikroskobu, taramalı tünelleme mikroskobu ve elektrostatik kuvvet mikroskobu gibi mikroskop uçlarında tarama tipi olarak tek duvarlı nanotüpler kullanılabilir.
Karbon nanotüp fiberleri hidrojen depolamaya olanak sağlayan geniş yüzey alanı ile potansiyel enerji depolama malzemesi olabilmektedir.
Karbon nanotüp filtre zehirli kimyasal maddeleri, biyolojik kirleticileri, petrolden de ağır hidrokarbonları ve nano ölçekteki mikropları bile sudan ayrıştırabilir.. Karbon nanotüp filtre sayesinde hem deniz suyundan içme suyu elde edilebilir hem de fakir ülkelerde yaşayan binlerce insana daha temiz su sağlanabilir.
Virüsleri ortaya çıkarmak için nanoelektro-mekanik cihazları kullanılmaya başlanmıştır. Grip virüsü nanotel alan-etki transistörü ile gözlenebilmektedir. Onlarca virüsü aynı anda algılayabilecek cihazlar geliştirilmektedir.
Yumuşak bir doku gibi binlerce kez sıkıştırılıp bırakılsa bile karbon nanotüpler eski şekillerini koruyabilir. Nanotüpler, yapay kas uygulamalarında, sentetik kas ve yüzeylerde desen oluşturmada kullanılabilir.
Karbon nanotüpler protein reseptörleri veya DNA ile etkileşime girerek çok az miktardaki kimyasal maddelerin tespit edilmesinde potansiyel biyosensör olarak enzimler ve diğer redoks proteinleri tespit etmek için ayrıca gaz molekül sensörü olarak da kullanılırlar.
Tetrafloroetilen (TFE) monomerlerinin polarizasyonla bir araya gelmesi sonucu PTFE polimeri oluşur. PTFE’nin üretim aşaması aşağıdaki figürde görülmektedir.
PTFE’nin dökümü için yaygın olarak kullanılan yöntemlerden biri kalıplama yöntemidir. Kalıplama yöntemi, sıkıştırma kalıplama, akıtma kalıplama, çıkarma kalıplama ve şişirme kalıplama gibi farklı işlem türlerine sahiptir. Sıkıştırma kalıplama, PTFE’yi dökmek için en yaygın olarak kullanılan yöntemdir.
PTFE’nin dökümü için kullanılan bir başka yöntem harmanlamadır. Harmanlama yöntemi çözelti harmanlama ve eriyik harmanlama olarak iki kategoriye ayrılır.
Sahip olduğu üstün özellikler nedeni ile PTFE birçok endüstri alanında yaygın olarak kullanılmaktadır.
Otomotiv endüstrisi: Araçların dişli sitemlerinde yağlama amacı ile kullanılır. Yüzey enerjisinin düşük olmasından dolayı kendinden yağlamalı bilyeli yatak olarak kullanılır.
Petrokimya ve enerji endüstrileri: Sürtünme özelliklerinin iyi olması dolayısıyla conta, halka gibi işleme ekipmanlarında fonksiyonel bir malzeme olarak kullanılır.
Kimya Endüstrisi: PTFE, tepkimeye girmeyen bir malzeme olması nedeniyle, kimyasal saldırılara oldukça dirençlidir. Bundan dolayı asit kapları, asit tüpleri, hortumlar ve valfler için kaplama malzemesi olarak kullanılır.
Endüstrilerde kullanımının yanı sıra elektrik ile ilgili uygulamaları da bulunmaktadır. Elektrikli cihazlarda, bileşenlerin boyutuna bakılmaksızın yoğun olarak yalıtım malzemesi olarak kullanılır. Tel yalıtkanı olarak kullanılması çok yaygındır.
Grafen, sp2’ye bağlı karbon atomlarının mono tabakalarından oluşan iki boyutlu bir nanomalzemedir. Grafen, yarı iletkenler, enerji depolama cihazları ve yüksek oda-sıcaklık hareketliliği ve yüksek termal iletkenlik gibi fiziksel özelliklerinden dolayı sensörler gibi çeşitli potansiyel uygulamalar için hem akademik hem de endüstri alanında büyük dikkat çekti.
Tüm Grafen Uygulamalarını Burada Bulun: 60 Grafen Kullanımı – 2019’da Graphene’nin (Potansiyel) Uygulamalarına İlişkin En Son Rehber
Grafenin Foto Tepkisi ve Grafen Kuantum Noktaları:
Grafen, yapısındaki zayıf ışık emiliminden dolayı düşük foto-yanıt gösterebilse de, bu sorunun üstesinden gelmek için bir seçenek vardır. Neyse ki, yan çapı 100 nm’den az olan bir grafen türü olan Grafen Kuantum Noktaları, kuantum hapsolmasından gelen olağandışı kimyasal, fiziksel, elektronik, optik özelliklere sahiptir. Ayrıca, GQD’lerin sensör uygulamalarında kullanılan geleneksel floresan nanomalzemelere bir alternatif olduğu düşünülmektedir. Ek olarak, DKG’ler çevre dostu ve ümit verici yeşil nanomalzemelerdir. Böylece, GQD’lerin üstün optik ve elektriksel özelliklerini hibrit yapılar oluşturarak grafenin üstün fiziksel özellikleri ile birleştirerek, grafen bazlı UV sensörleri oluşturulabilir.
UV’yi Tespit Etmek Neden Önemli?
Bilindiği gibi, ultraviyole radyasyonun tespitinin optik iletişim, çevresel izleme ve diğerleri gibi hem askeri hem de sivil alanlarda büyük bir önemi vardır. Özellikle, güneşten gelen UV radyasyonu, yaşlanma ve cilt kanseri de dahil olmak üzere çeşitli cilt sorunlarına neden olan serbest radikal kimyasal türler ürettiği için UV izleme önemli bir konudur. Grafen bazlı hibrit malzemelerin kombinasyonu, benzersiz fiziksel özellikler sağlayabilir ve yüksek foto-duyarlılık ve algılayıcılık gösterebilir.
Grafen UV Sensörlerinin Avantajları:
Grafen bazlı UV sensörlerinin diğer UV sensörlerine göre ana avantajı esnek ve şeffaf olmalarıdır. Grafen UV sensörleri, elektrik direncinde önemli bir değişiklik göstermeden olağanüstü şeffaflığa ve üstün mekanik esnekliğe sahiptir. Ek olarak, UV sensörlerinin sentezi düşük maliyetli ve uygulanabilir niteliktedir.
Sonuç olarak, grafen keşfi sayısız uygulamada çok fazla araştırmayı teşvik etmiştir. Grafen ve diğer iki boyutlu malzemeler yeni bir malzeme sınıfının geliştirilmesini sağlamıştır. Grafen sınırlı bir duyarlılığa sahip olsa da, kimyasal işlevsellik ile absorpsiyon arttırılabilir ve duyarlılık geliştirilebilir. Bu gelişmeler, hibrit fotodedektörler oluşturmak için grafen ile diğer materyallerin birleştirilmesiyle başarılır. Grafen ve diğer malzemeler arasındaki arayüzlerin gelişimi, emme katsayısının geliştirilmesine yardımcı olur. Özetle, grafen bazlı fotodedektörler, yeni nesil esnek ve giyilebilir elektronikler için umut vaat eden küçük bir ayak izi sunar. Grafen hakkında daha fazla araştırma, çeşitli alanlarda kullanılan daha verimli cihazlar geliştirmeye yardımcı olacaktır.
Grafen teknolojiye yeni değerler katmaya ve tıp, elektrik-elektronik, enerji depolama gibi daha bir çok alanda karşımıza çıkmaya devam ediyor.
Grafenin çekme mukavemeti silikondan iki kat, elektron hareketliliği galyum arsenit ‘ten 100,000 cm/Vs, termal iletkenliği gümüşe göre 10,000 kat daha fazla olması gibi sıra dışı özellikleri sayesinde bu ürün için araştırma çılgınlığı başlamakta.
Elektronik cihazlar artık grafen ile kağıt inceliğinde ve hafif olarak üretilebiliyor.
Günümüzün sorunu olan cihazların şarj tükenme problemi de artık grafen ile çözülebiliyor ve 15 dakikalık şarj bir hafta kullanılabiliyor.
Suya ve gaza dayanıklılığı sayesinde grafen ile yeni nesil su izolasyonuna gerek kalmadan suya dayanıklı cihazlar üretilip, gazların ayrıştırılmasında da grafen kullanılabiliyor.
Vücudunuzla iletişime geçebilme potansiyeli ile grafen biyomekanik ve biyoelektronik alanlarda da yeni bir çığır açıyor.
Nanoteknolojinin enerji sektöründeki olası kullanım alanlarından bahsetmeden önce bu nanomalzemelerden birkaçının nasıl olağanüstü özellikler sergileyebildiklerini görelim.
Son yıllarda akademik araştırmaların ilgi odağı olduğu nanomalzemelerden biri Karbon Nanotüp (CNT) tür. Karbon Nanotüp, Japon bilim adamı Sumio Iijima tarafından 1991 yılında keşfedilmiştir. Çok ince duvarlı olan bu tüpler tek sıra karbon atomundan oluşan bir grafen katmanının silindir şeklinde birleştirilerek elde edilir. Tek Duvarlı Karbon Nanotüp (SWCNT) ve Çok Duvarlı Karbon Nanotüp (MWCNT) olmak üzere iki çeşittir. CNTler olağanüstü dayanım, esneklik, elektrik ve ısıl iletkenlik gibi özelliklere sahiptirler. Bu özellikleri sayesinde, enerji alanlarında kullanımları ile ucuz, kolay ve daha etkili enerji üretim, taşıma ve tüketim metotlarına ulaşılabilmektedir.
2004 yılında keşfedilmiş diğer bir yeni nanomalzeme ise Grafen’dir. Altıgen bal peteği kristal yapısına sahip birbirlerine kovalent bağlarla bağlanmış karbon atomlarından oluşur. Karbon Nanotüp gibi, Grafen de enerji alanında kullanım için önemli olan olağanüstü fiziksel ve kimyasal özellikler göstermektedir. Grafenin enerji sektöründe kullanılması üzerine birçok çalışma yapılmaktadır. Bu çalışmaların bir kısmı elektrik enerjisinin etkili bir şekilde taşınması ve depolanması üzerinde yoğunlaşmaktadır.
Karbon Nanotüp ve Grafenin yanı sıra enerji alanında olağanüstü uygulamalar bulan çeşitli nanoparçacıklar da vardır. Büyüklükleri 1-100 nm arasında değişen nanoparçacıkların yüzey alanları çok geniştir, bu da kimyasal etkinliklerinin artmasına sebep olmaktadır. Ayrıca, mükemmel optik ve iletkenlik özelliklerine sahiptirler. Güneş enerjisi gibi yenilenebilir kaynaklardan enerji toplanması, nanoparçacıkların yoğun olarak kullanıldığı ana uygulamalardan biridir. Nano boyutlu diğer parçacıklar da sayısız mükemmel özellikler göstermektedir. Nanomalzemelerin kullanım alanlarını şu şekilde özetleyebiliriz; güneş enerjisi, hidrojen teknolojisi, enerji depolama, yakıt hücreleri, enerji taşımacılığı ve enerji tüketimi. İlerleyen yıllarda, nanoteknoloji sayesinde nanomalzemelerin bahsedilen alanlarda kullanımının enerji tüketimini nasıl değiştireceğini uzun vadede göreceğiz.
Dünya şimdi, bir buçuk milyondan fazla enfekte ve binlerce resmi olarak doğrulanmış ölüm vakasıyla açıkça ve gizlice ölümcül olan bulaşıcı Koronavirüsün işgali altındadır. COVID-19’un salgının merkez üssünde meydana gelen değişim ve bunun sonucunda dünyanın hemen hemen dört köşesindeki olağanüstü hal durumunun küresel bir salgın olarak ilan edilmesi, dünyadaki çoğu araştırma projesini ve yüksek profilli üniversitelerin sırayla askıya alınmasını zorunlu kılmıştır. Ölümcül salgının yol açtığı aşırı kritik durumu aşmanın en hızlı ve en etkili yolunu bulmak için bilimsel araştırmalar yapılmaktadır. Buna ek olarak, işletmeler rutin ürünlerinin üretimini durdurmuş ve koronavirüsle savaşmak için en temel araçlara yönelik neredeyse büyük talebe cevap vermek için maskeler, alkol, dezenfektan çözeltileri ve jeller üretmeye odaklanmıştır. Önümüzdeki bölümlerde esas olarak, Koronavirüs ailesinden patojenlerin neden olduğu bulaşıcı hastalıkların tedavisinde ve ayrıca yeni COVID-19’u tedavi etmek için potansiyel nanoparçacık bazlı aşıların ve ilaçların tedavisinde kullanılan aşıların oluşturulmasında nanoparçacıkların kullanımı tartışılmaktadır.
Bugün, bir aşıyı küresel bir ırk olarak bulmak, çoğu hükümet için ilk öncelik ve diğer insanlar için büyük bir endişe olarak kabul edilmektedir. Daha önce MERS-CoV durumunda, güvenli ve etkili profilaktik önlemler sunabilen yeni ve spesifik bir aşı geliştirmek için çağrılar yapıldı. Daha spesifik olarak bu sayıda, STING agonistlerini ve alt birim viral antijeni sağlayabilen poli- (laktik-ko-glikolik asit) (PLGA) nanopartiküllerinin uygulanmasına dayanan yeni bir aşı geliştirilmiştir. İnterferon genlerinin (STING) uyarıcısı, doğuştan gelen bağışıklık tepkisinde yer alan molekülleri düzenlemekten sorumlu bir sinyal yolunun parçası olarak kabul edilen proteinler ve yeni bir kanser ilacı sınıfıdır. Bu nanoteknolojik aşılama prosedürüne dayanarak, STING agonistleri, sarmal morfolojisi olan kapsid benzeri polimerik nanoparçacıklara gömülür. Bu polimerik nanoparçacıklar, net lokal bağışıklık aktivasyonu ve pH’a duyarlı salım profiline ve ayrıca sistematik reaktojenesiteye sahiptir. Antijenin konjügasyonu üzerine, içi boş polimerik nanoparçacıklar bağışıklık hücreleri ve lenf düğümlerine STING ve antijenlerin dağıtımını kolaylaştırmak için virüse benzer morfoloji sağlar1.
MERS koronavirüsü tedavi etmek için başka bir aşı, S protein nanopartikülleridir. Bunu yapmak için, Spike proteini nanopartikülleri ve MERS-CoV S genini kodlayan bir rekombinant adenovirüs serotip 5’in alüminyum adjuvan ile etkileşmesine izin verilir. Daha sonra ve heterolog prime-boost aşılama stratejisine dayanarak, aşı MERS-CoV’ye karşı bazı belirli immünoglobulin G’yi indükleyebilir. Bununla birlikte nötrleştirici antikorlar, homolog immünizasyonun yanı sıra, MERS-CoV’ye karşı S protein nanopartikülleri ile heterolog prime-boost immünizasyonu yoluyla indüklenir. Bu durumda Thl hücresinin aktivasyonu, MERS’i kodlayan adenovirüs serotipi 5 ile yapılır. Sonuç olarak, heterolog prime boost, MERS-CoV’e karşı daha uzun süre dayanan bağışıklık tepkilerine yol açabilir2.
MERS-CoV ile savaşmak için bir aşı oluşturmaya yönelik bu yöntemde, MERS-CoV yapısında bulunan proteinler potansiyel aşıların geliştirilmesi için ipekböceği larvalarında ve Bm5 hücrelerinde enjekte edilir. Başlangıçta zar ötesi sitoplazmik alanlardan (STM) yoksun olan MERS-CoV S proteini, bir bombiksin sinyal peptidi avantajı kullanılarak ipekböceği larvalarının hemolimfine gömülecek şekilde saflaştırılmıştır. Daha sonra saflaştırılmış STM, küçük nanoparçacıklara ve S proteinine girer. Buna ek olarak, STM insan dipeptidil peptidaz 4’e (DPP4) bağlanabilir. S proteinlerinin birlikte ekspresyonu MERS-CoV membran proteini (M), zarf proteini (E) ve hücre dışındaki Bm5 hücrelerinde MERS-Coronavirus benzeri partiküller (MERS-CoV-LP) meydana getirir3.
Son zamanlarda yapılan klinik hücre kültürü çalışmalarından elde edilen sonuçlar, kolorokinin (Chloroquine) (70 yaşındaki sıtma ilacı) potansiyel olarak 2019 koronavirüs hastalığına (COVID-19) karşı etkili bir terapötik ajan olarak kullanılabileceğini göstermektedir. Türev hidroksilklorokin ile klorokin, sıtmayı ve yaygın otoimmün hastalıkları tedavi etmek için profilaktik bir strateji olarak uygulanacak ucuz ve güvenli bir ilaç olduğu bilinmektedir. Göz hasarının klorokinin uzun vadede en yaygın yan etkisi olduğu belirtilmelidir. Klorokinin anti-viral mekanizmasının hala tartışmalı olduğu bir gerçek var. Bununla birlikte, çalışmalar, hücre kültürü çalışmalarında SARS-CoV ve insan koronavirüs OC43 gibi virüslere karşı etkili terapötik aktiviteye sahip olduğunu göstermektedir. Nanotıpta, klorokin mevcut olduğunda nanopartiküller ile hücre etkileşimlerinin kapsamlı bir görünümünü elde etmek amacıyla hücrelerdeki nanoparçacıkların emilimini araştırmak için klorokin kullanılmıştır. Bu tür etkileşimler, viral replikasyon gerçekleşmeden önce tam olarak erken aşamalarda devam eden mekanizmaları netleştirebilir. Nanotıp, özellikle hücreler koronavirüs (SARS-CoV-2) alımındaki değişiklikler hakkında yeterli bilgi sağlayabilir4. Şekil 1, klorokinin COVID-19’a karşı terapötik etki uyguladığı mekanizmayı gösterir.
Şekil 1. Klorokinin COVID-19’e karşı Şeması 4
Kimyasal olarak konuşursak, klorokin, düşük pH ve kapalı membran ile organellerde kapsüllenen ve asitliklerini değiştiren zayıf bir alkalin ilaç olarak kabul edilir. Memeli hücrelerinde, klorokin tedavisi lizozomların pH artışıyla sonuçlanır. Lizozom füzyonun önlenmesi yoluyla, lizozom, yukarı akış endositik kaçakçılığını, hücre zarından taşınmayı engellemek için trafik sıkışıklığı gibi ardışık bir şekilde engeller. Klorokin antiviral etkisinin viral füzyon ve replikasyonu (pH’a bağımlı olarak kabul edilir) inhibe ederek, viral zarf glikoprotein ile birlikte konak reseptör protein glikosilasyonunu önlediği düşünülmektedir4.
Çalışmalar, klorokinin geniş spektrum kalitesine bağlı olarak bazı yerleşik makrofajlar kullanarak nanopartiküller endositozu inhibe ettiğini göstermiştir. İlgili klinik klorokin dozları, çeşitli boyutlarda 14 ila 2600 nm arasında değişen sentetik nanoparçacıkların monodispersitesine ve hücrelerdeki ve farelerdeki mononükleer fagosit içindeki şekillere neden olur. COVID-19’un tedavisinde klorokin mekanizması ile ilgili çalışmalar, klatrin kaplı çukurlarda en yaygın proteinlerden biri olarak kabul edilen fosfatidilinositol bağlayıcı klatrin düzeneği (PICALM) olarak adlandırılan bir proteinin ekspresyonunu reddettiğini ortaya koymaktadır. Taşıyıcı seçimli bir klatrin adaptörü olarak PICALM, endositoz oranını düzenleyen membran eğriliğini algılamaya ve türetmeye çalışır. PICALM tükenmesi nanopartikülleri içselleştirmek için sorumlu baskın yol olarak klatrin aracılı endositozun inhibisyonuna neden olur4. Partikül karakterizasyon tekniklerinden elde edilen verilere dayanarak, koronavirüs (SARS-CoV-2) küre şeklinde olup boyutu 60 ila 140 nm aralığındadır. Bu, klorokinin koronavirüse karşı etkisine aracılık etmek için herhangi bir mekanizmanın, PICALM’i baskıladığı için nanopartikül yapısının klatrin aracılı endositozunu gerçekleştirme yeteneğinde bir azalmaya neden olduğu anlamına gelir.