1- Bir malzemenin özellikleri o malzemenin yapısı vasıtasıyla tanımlanır, ancak bu malzeme oldukça özgündür, çünkü bu materyalin kesin bir modeli yoktur. Grafen Oksit dispersiyonu, yeni uygulamalara fırsat veren olağanüstü fiziksel, kimyasal ve mekanik özellikler sunar.
2- Grafen Oksit şekilsizdir, ancak genel olarak, grafen oksit, safsızlıkları koruyacak şekilde tamamen çıkarmayı amaçlayan grafen modelinin aksine, işlevsel hidroksit ve oksijen gruplarına sahip petek şeklinde ve karbon atomları içeren iki boyutlu bir tabaka olarak tanımlanabilir.
3-Grafen oksit, farklı olarak bazı özellikleri de barındırır. Kimyasal ve atomik yapısına bağlı olan elektrik ve iletkenlik özellikleri gibi.
4- Grafen oksit dispersiyonu ayrıca, foto ışıldama, yani ışımanın yayılmasıyla ışığın yayılması gibi benzersiz optik özelliklere sahiptir. Bu özellik, biyo duyumda, flüoresan etiketlerde ve optoelektronik uygulamalarda, optik fiberde veya likit kristal ekranlarda hareket eden ışığı tespit eden sensörlerde kullanılabilmektedir.
5-Ortalama elastik modülü ve kırılmaya karşı en yüksek direnci sırasıyla 32 GPa ve 120 MPa’dır.
6-Grafen Oksit Dispersiyonu ayrıca tek tip tabakalar halinde ultra ince ve esnek bir nano yapıdadır.
7- Grafen Oksit yüksek çözünürlüğe sahiptir ve aşağıda açıklandığı gibi suda kolayca dağılır.
Genel olarak, Grafen Oksitin sentezlendiği, Brodie, Staudenmair veya Hummer olan üç ana yöntem vardır. Bu yöntemler, grafitin çeşitli seviyelerde oksidasyonu için aynı prensibi temel alır. İlk iki yöntem, grafiti oksitlemek için Potasyum Klorat (KClO3) ile Nitrik Asit (HNO3) ile kimyasal bir reaksiyon gerçekleştirir. Bununla birlikte, Staudenmair yöntemi ile çoklu aşamalarda Klorat eklenir. Prosedürdeki bu fark, grafitin daha fazla oksidasyonuyla sonuçlanır ve bir yan ürün olarak CO2 üretir.
Hummer yöntemi, grafen oksit yapısında daha iyi bir homojenlik sağladığından ve özelliklerde daha düşük bir çeşitlilik aralığı verdiğinden en yaygın kullanılan yöntemdir. Bu yöntem de, önceki reaksiyonlardan farklı iki farklı bileşik kullanır: Potasyum Permanganat (KMn04) ve Sülfürik Asit (H2S04), bu nedenle bu yöntem CO2 kirletici üretmez. Ayrıca, dispersiyonu hazırlamak için, Grafen Oksit su ile karıştırılır.
Grafen oksidin su içinde dispersiyonu, 1 ile 2 katman kristalinin yüksek konsantrasyonuyla kararlı bir yapıdadır. Kompozit malzemelerin hazırlanması gibi farklı uygulamalarda kullanım için uygundur. Grafen Oksit suda kolayca çözünür. Bu, ince bir grafen oksit filminin birikmesinin çok basit bir işlem olmasını sağlar.
Bakır Oksit, ” bakır (II)oksit” olarak da bilinen CuO formülüne sahip inorganik bileşiktir (Şekil 1). Bu formda Cu, Cu + 2 formundadır ve Cu’nun elektron konfigürasyonu, [Ar] 3d104s1’den [Ar] 3d94s0’a değişir. Mineral olarak tenorit olarak bilinir (Şekil 2). CuO, pirometalurjik işlemler kullanılarak elde edilebilir.
Bakır (I) Oksit, Cu2O formülüne sahip diğer bir Bakır stabil bileşiğidir. Bu formda Cu, Cu + 1 formundadır. Elektron konfigürasyonu [Ar] 3d104s1’den [Ar] 3d104s0’a değişir, böylece bakır (II) okside kıyasla daha kararlıdır. CuO (Şekil 3) genellikle bakırın oksidasyonu yoluyla elde edilir ve sarı veya kırmızı renge sahip olabilir. Cu20, nemli havada CuO’ya dönüşür. Bu ürün toksik bir bileşiktir ve havada 0.22-14mg / mg3 içeriğinde sunulması halinde 1-2 saate maruz kalındığında ani gelişen zehirlenmeye neden olabilir.
Yapı bakımından, bakır oksit, Cu’nın 4 oksijen atomu tarafından koordine edildiği monoklinik bir kristal yapısına sahipken bakır oksit, Cu atomlarının FCC alt düzeneğine yerleştirildiği ve oksijen atomlarının BCC alt düzeneğine yerleştirildiği kübik bir yapıya sahiptir.
Katı Cu20 diamanyetik iken CuO antiferromanyetik düzen gösterir.
Her ikisi de p-tipi yarı iletkenlerdir, ancak Cu2O 2eV’lik bir bant boşluğuna sahipken CuO’nun 1.2 eV – 1.9 eV’lik bir bant boşluğuna sahiptir.
Cu2O bakır metalin oksidasyonu veya sülfür oksit ile bakır (II) çözeltilerinin indirgenmesiyle elde edilirken CuO, cevherlerden bakırın çıkarılmasında kullanılan pirometalurjik işlemlerle elde edilir.
MIT mühendisleri ıspanak yapraklarından ve Karbon nanotüpden oluşmuş nano-biyonik bitkileri sensörlere transfer ederek patlayıcı maddeleri saptamak için çeşitli çalışmalar gerçekleştirmişlerdir.
Bitkilerin içinde nanoparçacıklar oluşturularak elde edilen nanobiyonik yapılar sıra dışı özellikler gösterebilirler. Bu çalışmada, çeşitli mayın ve patlayıcıların yapısında bulunan nitroaromatik gibi kimyasal maddeleri saptamakta ıspanak bitkisinin yaprakları ile karbon nanotüp kullanılmıştır. Bu kimyasal maddeler yer altı sularına karıştığı zaman, Karbon Nanotüp içeren nanobiyonik bitkiler floresan sinyaller yaymakta ve bu sinyallerde kızılötesi kameraları ile tespit edilebilmektedir. Ayrıca, nanoparçacıkların bitkilere eklenmesi ile bitkinin fotosentez yapma kapasitesi artmakta ve çevreyi kirleten Nitrikoksit gibi kimyasalları belirlemede sensör görevi görmektedir. Bu çalışmada yer alan araştırmacı Strano, bitkilerin çevrelerine dair birçok bilgiye sahip oldukları için çok iyi birer analitik kimyager olduklarını söylemiştir. Araştırma grubu, hidrojen peroksit, patlayıcı TNT ve sarin sinir gazı gibi molekülleri tespiti için Karbon nanotüp çözeltisini bitki yaprağının alt yüzeyine özel bir teknikle uygulamış ve en çok fotosentezin gerçekleştiği mezofil tabakasına sensör yerleştirmiştir. Yeraltı sularında bulunan patlayıcı kimyasalları tespit etmek için, bitki yaprağının üst yüzeyine lazer ışını yansıtmışlar ve buda yapraktaki Karbon nanotüpden kızılötesi ışınların yayılmasını tetiklemiştir. Kızılötesi kamerası yardımıyla da patlayıcıların tespit edilmesi mümkün olmuştur. Bu çalışmanın sağlamış olduğu ek bir özellikte bitkinin büyümesini etkileyen dopamine maddesinin belirlenmesidir.
Bu çalışmadaki araştırmacılar, nanobiyonik yöntemin yaşayan her canlı bitkiye örneğin MIT mühendisleri tarafından çalışılmış Arabidopsis thaliana bitkisine de uygulanabileceğini söylemişlerdir. Devam eden çalışmalarda değişik kimyasallara göre sensörler geliştirilmekte ve uygulamaları araştırılmaktadır.
Özetle, bitkiler topraktaki ve sudaki en ufak bir değişimi anlayabilecek kapasitede canlılardır ve böylece çevredeki değişimleri önceden anlamak ve önlemek için çok etkili birer seçeneklerdir.
Grafen, çelikten 300 kat daha sağlam, akım taşıma kapasiteleri bakıra nazaran 1000 kat daha fazla, tek atom kalınlığında(2 boyutlu) ve termal iletkenliği alüminyumdan 20 kat daha fazladır. Bu özellikleri grafeni şuana kadar keşfedilmiş en iyi malzeme yapmaktadır.
Dünyada Grafenin yüksek üretimi konusunda çalışmalar gün geçtikçe artmaktadır. Üretimler artıkça, büyük firmaların(IBM, Apple, Samsung gibi) geleceğimize yön vereceği grafen katkılı yeni yeni ürünleri ortaya çıkmaktadır. Bunların biriside GRAFEN TRANSİSTÖR
IBM yapmış olduğu bir çalışmada yüksek hızlı grafen transistör üretmeyi başardı. Geliştirilen grafen transistör 100 GigaHertz frekansa sahipken, silikon transistörler en fazla 40GigaHertz e sahiptir. Grafen katkılı transistörler, termal ayrışma yöntemi ile SiC wafer üzerinde geliştirilmiştir.
İnorganik malzemelerin nano tozları, nanoparçacıkların boyut faktörü ve yapısal özellikleri ile tanımlanan kendi özelliklerine sahip bağımsız bir nesnedir. Bu gerçeğe dayanarak, standart teknolojik işlemlerde mikron boyutlu tozlar için nanotozların basit bir şekilde ikame edilmesi ümit verici görünmüyor. Bu nedenle, nano tozların kapsamlı kullanımı yalnızca belirli özelliklerini dikkate alan veya bunlara dayanan teknolojilerde mümkündür.
APT Company, bilimsel kurumlarla işbirliği içinde, aşağıda sunulanlar da dahil olmak üzere bazı elektropatlayıcı nanotoz uygulamaları geliştirmektedir.
Nanotoz Katkılı Yağlayıcılar
Yüksek Enerjili Malzemeler ve İşlemler
Alaşımların ve Yüksek Isılı Kimyasal Bileşiklerin Sentezi
Oksit-Hidroksit Alüminyum Fazlarlarının Elektropozitif Nanoyapılı Partiküllerinin Sentezi
Epoksi Yapıştırıcıların Modifikasyonu
Alüminyum Oksit-Hidroksit Fazlarlarının Nanoyapılı Partiküllerine Dayalı Filtreleme Malzemeleri Alüminyum Oksit-Hidroksit Fazlarlarının
Nanoyapılı Partiküllerine Dayalı Antiseptik Malzemeler Elektropatlayıcı Hidrojen
Nanopowder Bazlı Katalizörler Nano
Alüminyum Nitrür (AIN) Nanopartikülleri %99,95 saflığa sahiptir. Ortalama parçacık boyutu 60-70 (nm)’dir. Bu elementlerin rengi 0,05 g/cm3 yığın yoğunluğuna ve 320 w/MK ısı iletkenliğine sahip gridir. Böyle bir ölçekte, kuantum etkileşimleri nedeniyle birçok özellik geliştirir, bu da onu birçok uygulamada özel ilgi haline getirir. Bu nanopartiküller soğuk ve kuru bir yerde saklanır ve boşlukta kapatılır. Hava ile etkileşime girmemeli ve basınçtan kaçmamalıdır. Bu elemanlar aynı zamanda elektronik cihaz uygulaması yapmak için de kullanılmaktadır. Bu nanopartiküller ayrıca kombine devre kartları yapımında da kullanılmaktadır. Aynı zamanda yüksek ısıl iletkenlik özelliklerine sahiptir ve çoğunlukla elektronik cihazlar için ambalaj malzemelerinde kullanılan polimer ve metal imalat matrislerinin matris kompozitlerinin üretiminde kullanılır. Ayrıca ısı alıcı, pota üretiminde ve ayrıca iletken seramik üretiminde kullanılır.
Nanoparçacık teknolojisi hızla gelişmekte ve tıpta çok çeşitli amaçlar için kullanılmaktadır. Nanopartiküller, üç boyutlu uzayda birincil birimin 1-100 nm olan nanometre ölçeği aralığında olduğu maddelerdir. Metalin antibakteriyel ajanlar olarak potansiyel nanoparçacıkları, bakterilerde çoklu ilaç dayanıklılığının yarattığı zorluğun üstesinden gelmek için alternatif bir yöntem olarak görülüyor. Nanoteknolojideki gelişme, yeni antibakteriyel ajanların geliştirilmesi için inovasyon yaklaşımlarının yolunu açmıştır.
Nanopartikül antibakteriyel tedaviler, anti-bakteriyel dirençli enfeksiyonların üstesinden gelmek için nanopartiküllerin kullanılması, bir yarada bir enfeksiyon başladığında ilaçların salınması gibi ilginç olanaklar sunar. Ayrıca, staph enfeksiyonlarına karşı savaşmak için bir antibakteriyel nanoparçacık kremi belirlenmiştir. Nanopartiküller, bakterileri öldürdüğü düşünülen nitrik oksit gazını içerdiğinden. Enfeksiyon başlarsa, yaradaki tehlikeli bakteriler nanokapsüllerin açılmasını sağlayarak antibiyotikleri serbest bırakır. Bu, bir enfeksiyonun çok daha acil tedavisine izin verir.
Bizmut sülfür (Bi2S3) nanoparçacıkları, optik ve elektronik cihazlarda kullanılan kristalli toksik olmayan yarı iletkenler, güneş enerjisi üretim ve dönüştürme cihazlarında kullanılan hibrit bilk nano-hetero-bağlantılar ve hassaslaştırılmış güneş pilleri olarak sınıflandırılmaktadır. Bizmut sülfür nanoparçacıkları, onları termo elektronik cihazlar, doğrusal olmayan absorpsiyon, biyomolekül algılama, fotovoltaik malzemeler, fotodiyot dizisi ve kızılötesi spektroskopi olarak yararlı maddeler yapan 1,3 eV doğrudan bant aralığı ile benzersiz optoelektronik özellikleri nedeniyle çok dikkat çekmiştir. Bizmut sülfür nanoparçacıkları, çökeltme, mikrodalga radyasyonu ve hidrotermal yöntem gibi yöntemlere dayalı olarak sentezlenen nanoçubuklar, nanoteller ve nanoçiçekler gibi farklı allotropik formlardadır. Ayrıca, yeşil kimya yöntemlerinin yanı sıra kolloidal sentez yoluyla nanokristaller olarak fiziksel ve kimyasal tekniklerin avantajlarından yararlanarak da sentezlenebilirler. Başka bir yöntemde bizmut sülfür nanoparçacıkları, bizmut çözeltisinden hidrojen sülfit ile çökeltilerek elde edilebilir. Bizmut sülfür nanoparçacıkları, aynı zamanda, az çözünür ilaçlar için eczacılıkta ilaç nanotaşıyıcıları olarak da kullanılmıştır.
Ferro Vanadyum, alkalilere ve ayrıca sülfürik ve hidroklorik asitlere karşı stabilite sağlar. Ferro Vanadyum, Çeliğe Karşı Korozyonun Önlenmesine de Yardımcı Olur. Aynı zamanda Çelik, Döküm ve Kaynak malzemelerinin Çekme Dayanımının arttırılmasına da yardımcı olur.
Ferro Titanyum, Kükürt, Karbon, Oksijen ve Azot ile son derece reaktif olduğu için Çelik Üretiminde Temizlik Maddesi olarak kullanılır. Ayrıca deoksidasyon, kükürt giderme ve denitrifikasyon için kullanılır. Ferro Titanyum, Kaynak Elektrotları ve Yangın İşleri uygulamalarında da kullanılır.
Ferro Bor, katı roket yakıtlar ve patlayıcılarda, süperiletkenlerde, nötron emicilerde, piroteknik karıştırıcıda, refrakter metal boritlerde tercih edilmektedir.
Toz İçindeki Yüksek Karbonlu Ferro Krom Tozu veya Ekstra Yüksek Karbonlu Ferro Krom, esas olarak Sert Dolgu Elektrotları, Aşınmaya Dayanıklı Plakalar, Borulu Elektrotlar ve Sert Dolgu Akı Çekirdekli Tellerin üretiminde kullanılır.
Düşük Karbonlu Ferro Krom, Karbon yüzdesini Karbon seviyelerini etkilemeksizin ayarlanması gereken çelik içine eklenir. Düşük Karbonlu Ferro Krom Toz, Kaynak Elektrotları ve Çubuk Elektrotları gibi seveal uygulamalarda kullanılır.
Ferrosilisyum, çelik ürün kalitesini geliştirmek için sıvı metalde oksijeni gidermek amacıyla alaşım elementi olarak kullanılır. Silisyum temel olarak mukavemet ve aşınma direnci, esneklik (yay çelikleri), korozyon direnci (ısıya dayanıklı çelikler) ve düşük elektriksel iletkenlik ve mıknatıssal büzülme (elektriksel çelikler) özelliklerini arttırır. Düşük Al içerikli Standart FeSi, Yüksek Saflıktaki FeSi ve düşük karbonlu FeSi ürünleri, transformatör/motor, rulman, darbe emici, araç lastiklerinde çelik kord bezi ve paslanmaz çelik imalatında kullanılan özel kalitede çeliklerin üretiminde kullanılmaktadır.
Ferro Tungsten esas olarak herhangi bir alaşımın erime noktasını arttırmak için kullanılır ve bu nedenle Havacılık, Döküm ve Kaynak Elektrot gibi çeşitli uygulamalar için uygundur. Elektrotlar içinde, Ferro Tungsten esas olarak Sert Dolgu Elektörleri ve hatta Sert Dolgu Borulu Elektrotların üretimi için kullanılır.
Ferro Molibden, çeliği son derece güçlü ve aynı zamanda kaynaklanabilir hale getiren sertleştirme özellikleri nedeniyle bir alaşıma eklenir. Ferro Molibden ayrıca Korozyon direncini artırmaya yardımcı olur. Ferro Molibden’in en büyük pratik uygulamaları, demir alaşımlarında kullanımıdır ve molibden içerik aralığına bağlı olarak, takım tezgahları ve ekipmanları, askeri donanım, rafineri boruları, yük taşıyan parçalar ve döner matkaplar için uygundur. Ferro Molibden ayrıca otomobillerde, kamyonlarda, lokomotiflerde ve gemilerde kullanılır. Ayrıca Ferro Molibden, sentetik yakıt ve kimyasal tesisler, ısı eşanjörleri, güç jeneratörleri, yağ arıtma ekipmanları, pompalar, türbin boruları, gemi pervaneleri, plastikler ve asit depolama kapları tarafından kullanılan paslanmaz ve ısıya dayanıklı çeliklerde kullanılır.
Ferro Niobium, otomobiller, ağır kamyonlar, köprüler ve üst geçitler, inşaat vinçleri, büyük miktarda gerilime dayanım gereken veya iyi bir mukavemete ihtiyaç duyulan diğer tüm yapılarda kullanılan çelik üretimi için kullanılır.
Form: Toz
Ergime Noktası: 1530-1580°C
Saflık: 99.5 %
Kimyasal Formülü: FeNb
Yoğunluk: 8,1 gr / cm3
Alaşım Oranı (Cu-In) | müşteri ihtiyaçlarına bağlı |
Ortalama Parçacık Boyutu (nm) | <500 |
Cu-In alaşım nano tozu, oldukça reaktifdir, bu nedenle dikkatle kullanılmalı ve hızlı hareketler yapılmalı, titreşimlerden kaçınılmalıdır.
Toz güneş ışığından, her türlü ısınma, nem ve darbelerden uzak tutulmalıdır. Parçacıkların pıhtılaşması ciddi bir sorundur, bu nedenle,
toz vakum altında kapatılmalı ve serin ve kuru koşullarda tutulmalıdır. Hava teması önlenmelidir.