Yıllık arşiv 2019

3D Yazıcı Nedir? Kullanım Alanları

Sanal ortamda tasarlanmış 3 boyutlu nesneleri katı formda somut nesnelere dönüştüren makinelere 3 boyutlu yazıcı denir. 3D baskı teknolojisi ile ihtiyaç duyduğunuz bir aparat basabilir, 3D tarayıcı ile taradığınız bir cismin çıktısını alabilir, çizdiğiniz bir tasarımı prototipleyebilir, hatta kendi ürününüzü oluşturabilirsiniz. Kısacası 3 boyutlu yazıcılar ile dilediğiniz her şeyi basabilirsiniz.

3D Yazıcı Tarihi

İlk 3D yazıcı teknolojisi Charless Hull tarafından 1984 yılında ortaya çıkmıştır. 1986 yılında 3D Systems adlı ilk 3D yazıcı şirketinin kurulmasıyla yeni bir sektör doğmuştur. 90’lı yıllarda bu teknoloji hızla ilerlemiş, Amerika’da ilk renkli baskı alınmıştır. 2005 yılında başlayan ve 2007 yılında ilk açık kaynak kodlu, kendi parçalarını dahil prototipleyebilen yazıcıları çıkaran RepRap projesi ile 3D yazıcılar evlerimize kadar ulaşmıştır. Bu girişimin amacı maliyeti azaltarak kullanımı yaygınlaştırmaktı ve günümüzde ne kadar büyük bir başarıya ulaştığını görebiliyoruz.

Nasıl Çalışır?

3D yazıcılar, katmanlı imalat (Additive Manufacturing) diye nitelendirilen bir üretim yöntemi ile çalışırlar. Baskı için birçok hammadde kullanılsa da genellikle filament diye nitelendirilen termo plastik materyaller kullanılır.

3D yazıcıların çalışabilmeleri için 3boyutlu modele, tasarıma ihtiyacı vardır. Bilgisayar ortamında AutoCAD, Solidworks, 3DsMax gibi bir CAD (Bilgisayar Destekli Tasarım) programı ile tasarlanmış çizimler veya 3 boyutlu tarayıcı ile taranmış olan nesneler ‘.stl’ uzantısında dışa aktarılırlar. 3D yazıcı ‘.stl’ uzantısındaki dosyayı algılar ve baskı işlemini gerçekleştirir.

Çalışma prensibinin biraz daha detayına inmek istiyorum. Baskı işlemine başlamadan önce yazıcının ucunda ‘nozzle’ diye adlandırılan kafa bölgesinin belirli bir sıcaklığa gelmesi gerekmektedir. Çünkü 3D baskı işlemi eriyen filamentin katman katman ve üst üste serilmesiyle gerçekleşir. Filamentin düzgün bir şekilde yayılabilmesi için de kafa noktasından çıkartken yüksek sıcaklıkta erimesi gerekir. Kafa noktasından eriyerek çıkan filament yüzeyde yayılır yayılmaz donar ve katı formuna geçer. Tüm katmanlar tamamlandıktan sonra model tamamen katı formda hazır hale gelir.

Kaynak: pinshape.com

3D Yazıcı ile Neler Yapılabilir? Kullanım Alanları Nelerdir?

3D Yazıcı ile yapabileceklerinizin herhangi bir sınırı yok. Ürün prototipleme, ev dekorasyonu, hediyelik eşya gibi kullanım amaçları hali hazırda yaygın olanlar. Örneğin çiçekleriniz için tasarladığınız veya hazır tasarımını bulduğunuz bir vazo basabilirsiniz. Yapmayı düşündüğünüz bir robotun gövdesinde 3D baskılara yer verebilir, hatta gövdenin tamamını 3D baskı ile yapabilirsiniz. Nasıl mı? Yaptığımız Robot Kol uygulaması bir örnek olarak gösterilebilir.

Daha önce de belirttiğim gibi 3D yazıcının kullanım alanları bunlar ile sınırlı değil. Çikolata basan 3D yazıcılar ile kendi tasarladığınız çikolatalar elde edebiliyorsunuz. Çikolatanın dışında 3D yazıcı teknolojisi gıda sektöründe hızla gelişmekte.

NASA (Ulusal Havacılık ve Uzay Dairesi) astronotları ihtiyacı olan materyalleri uzaya gönderdikleri özel bir 3D yazıcıdan basarak elde ediyorlar.

3D yazıcı teknolojisi ayrıca giyilebilir teknoloji ve tekstilde de kendine yer bulmuş durumda. Ortopedik çözümlerde, giysilerde, saat ve bileklik gibi aksesuarlarda 3D baskı teknolojisinden yararlanılmaktadır. Ünlü spor markaları son dönemlerde spor ayakkabılarının tabanlarında ve çeşitli bölgelerinde 3D baskı kullanarak seri üretime geçirdiler. Bu sürece baktığımızda yüksek maliyet ve seri üretim sorunlarını bir nebze aştıkları görülüyor.

Medikal alanda ise gelişmeler fazlasıyla olumlu. 3D yazıcı ile protezler ve hastalara özel anatomi modelleri elde edilmekte. Hatta 3D baskı organ yapımı bile var. Hollanda’da 23 yaşındaki bir hastanın kafatası ile 3D yazıcı ile üretilmiş bir kafatası değiştiriliyor ve hastanın operasyona olumlu tepkiler verdiği sonucu elde ediliyor.

Kaynak: wired.co.uk

Son olarak, 3D yazıcı ile ev inşaa etmek de mümkün 🙂 . Çin’de WinSun adlı şirket 3D yazıcı ile tanesi 5.000$ değerinde günde tam 10 adet ev inşaa etmeyi başarmıştır.

Gördüğünüz gibi 3D yazıcı ile gerçekten yapabileceklerinizin bir sınırı yok 🙂

3D Yazıcı Çeşitleri

Günümüzde yaygın olarak kullanılan bazı yazıcı tiplerinden bahsedeceğim. 3D yazıcı teknolojisi yazının da başında bahsettiğim gibi “Katmanlı İmalat” tekniğine sahiptir. Yani tüm yazıcılar baskılarını katmanlar halinde çıkartıyorlar. Baskının katmanlaştırılmasının da farklı teknikleri var ve bu teknikler 3D yazıcıların çeşitlere ayrılmasına sebep oluyor. Endüstriyel 3D yazıcılar ile ev tipi 3D yazıcılar arasındaki farklar da burada ortaya çıkıyor. Gelin 3D yazıcıları çeşitlere ayıran bu teknikleri inceleyelim.

Stereolithography (SLA) Teknolojisi

3D yazıcı teknolojisindeki en eski teknik olsa da günümüzde hala kullanılmakta SLA tekniği. SLA teknolojisine sahip 3D yazıcılarda akışkan foto polimer (özel bir plastik çeşidi) hammaddeler işlenerek katı forma dönüşüyor ve baskı elde ediliyor. Hammadde yarı akışkan forma gelecek şekilde eritildikten sonra katman oluşuyor. Oluşan katmanlar bilgisayar kontrollü ultraviyole ışınlar ile bütün bir yapıya dönüşüyorlar. Her bir katman için bu işlem tekrar ediliyor ve baskının sonunda 3D katı bir model ortaya çıkıyor. İşlemler hızlı gerçekleşir ve detaylı, titiz baskılar elde edilir.

Digital Light Processing (DLP) Teknolojisi

DLP (Dijital Işık İşleme) tekniği SLA ile birçok ortak noktaya sahiptir. 2 teknikte de baskılar, akışkan polimerler ile gerçekleşir ve ikisi de baskıyı işlerken ışıktan faydalanırlar. Bu akışkan polimelerler, reçine diye de tabir edilebilir. SLA ışığı lazer ile sağlar, DLP tekniği ise özel bir projektör ile. DLP tekniği fazlasıyla hızlı işler ve SLA tekniğindeki gibi temiz ve detaylı baskılar elde edilir.

Fused Deposition Modelling (FDM) Teknolojisi

FDM (Birleştirmeli Yığma ile Modelleme) masaüstü 3D baskıda en yaygın kullanıma sahip tekniktir. İşleme başlamadan önce yazıcıya bir 3D model verisi girilir. Bilgisayar destekli bu tasarım verisini yazıcı okur ve işlem başlar. Termo plastik malzeme yazıcının extruder diye adlandırılan bölgesinde ısıtılarak erimiş plastik olarak X ve Y koordinatlarında basılır. Tabanın en altından başlayarak Z koordinatı boyunca katmanlar serilir. Serilen katmanlar birleşerek katı formda bir model elde edilir.

Selective Laser Sintering (SLS) Teknolojisi

SLS (Seçici Lazer Sinterleme) tekniğinde SLA’de olduğu gibi işlem bir lazer ile yapılır. SLA ile aralarındaki önemli fark, SLS tekniğinde hammadde olarak akışkan yerine toz malzeme kullanır. Bu malzemelere naylon, cam, seramik, alüminyum gibi örnekler verilebilir. Bu teknik yaygın olarak endüstride ürün geliştirmede ve hızlı prototiplemede kullanılır.

Not: Sinterlemek, katılaştırmak anlamına gelmektedir.

SLM (Selective Laser Melting) Teknolojisi

SLM (Seçici Lazer Eritme) tekniği birçok yerde SLS tekniği olarak addediliyor. Bu teknikte toz metaller yüksek güçte bir lazer ile 3D baskı haline getiriliyor. Bu teknoloji havacılık ve medikal sektörlerinde kullanılmaktadır. Alüminyum, paslanmaz çelik ve titanyum gibi malzemeler kullanılabilir.

Electron Beam Melting (EBM) Teknolojisi
EBM 3D Yazıcı Çalışma Prensibi

EBM (Elektron Hüzme Eritmesi) tekniği, toz taban füzyonu konusunda SLM tekniğine çok benziyor fakat iki tekniği birbirinden ayıran en önemli nokta kullanılan güç kaynakları. EBM teknolojisinde güç kaynağı olarak bir vakumun içindeki elektron demeti kullanılır ve çok yüksek sıcaklıklarda işlem yapar. Bunun haricinde SLM ile çalışma prensibi neredeyse aynıdır. EBM teknolojisinde de hammadde olarak metal kullanılır.

Laminated Object Manufacturing (LOM) Teknolojisi

LOM (Katmanlı Mal İmalatı) tekniğinde ısı ve basınç yardımıyla üst üste birleştirilmiş kağıt, plastik veya metal laminatlardan oluşan hammaddeler kullanılır. Hammadde ısı ve basınç ile eritilir, bilgisayar kontrollü bir bıçak veya lazer ile kesilerek şekillendirililir. Hızlı prototipleme imkanı sağlar.

3D Yazıcıda Bulunan Parçalar ve Malzemeler

Bir 3D yazıcıda genel olarak bulunan parçaları inceleyelim.

  • Sigma Profiller

3D Yazıcının iskeletini oluştururlar.

  • Şase (alüminyum veya pleksiglas)
  • Rulmanlar
  • Kaplinler
  • Miller
  • Kayışlar ve Kasnaklar
  • Nalburiye Malzemeleri (Somun, cıvata vb.)
  • Ara Elemanlar (İskeletin oluşması için gerekli 3D baskı, plastik veya akrilik parçalar)
  • Step Motorlar

X,Y,Z hareketleri ve extruder’ın itiş hareketi için kullanılırlar.

  • Fanlar

Hava sirkülasyonunu sağlamak için kullanılırlar.

  • Termistör

Isıyı ölçen komponenttir.

  • Isıtıcı

Filamentin gerekli ısıya ulaşmasını sağlayan komponenttir.

  • Sıcak Tabla

Baskının üzerine yapıldığı yüzeydir.

  • Extruder

Filamentin eritilip, itilerek nozzle ucuna aktarıldığı bölgedir.

  • Nozzle

Sıcak filamentin baskı için çıktığı kafa noktasıdır.

  • Limit Switch’ler (Endstop, durdurucular)

Yazıcıdaki X,Y ve Z koordinatlarındaki hareketler bu anahtarlar ile kontrol edilir.

  • Güç Kaynağı

220V alternatif akım enerjisini 12V veya 24V Doğru Akım enerjisine çevirerek yazıcıya enerji verir.

  • Anakart

Yazıcıdaki elektronik işlemleri anakart gerçekleştirir.

  • LCD Ekran

3D Yazıcıdaki işlemler buradan kontrol edilir.

  • Filament

Genellikle ABS ve PLA yapıdaki filamentler kullanılır.

Fiyatları Nasıl?

3D Yazıcılar evlerimize girmeye başladığından beri fiyatları bir hayli düşmekte ve teknolojinin gelişmesiyle düşmeye de devam edecektir. Düşmekte dediğime bakmayın, ev tipi olup da çok pahalı diyebileceğimiz 3D yazıcılar da mevcut.

Bir yazıcıya değer biçerken üründeki parça ve baskı kalitesi, kullanım pratikliği, baskı hızı gibi özellikler ayrıştırıcı oluyor. Günümüzde ev tipi bir 3D yazıcı almak istediğinizde fiyatlar ₺3.000 ile ₺25.000 arasında değişiyor.

Sitemizde bulunan 3D yazıcılara buradan ulaşabilirsiniz.

Makerlar için açık kaynak kodlu 3D yazıcı modelleri ve kılavuzları mevcut. Çok daha uygun fiyatlara istediğiniz parçalarla kendi 3D yazıcınızı yapabilir ve yaparken mekanik sistemleri öğrenebilirsiniz. Burada unutmamanız gereken nokta, kendi yazıcınızın teknik servisi olmayı da bilmelisiniz 🙂

Sitemizde bulunan KENDİN YAP 3D yazıcı parçalarına buradan ulaşabilirsiniz.

3D Kalem Nedir?

3 boyutlu yazıcı teknolojisi hakkında daha detaylı Ar-Ge çalışmaları yapıldıktan sonra sektöre bir de 3D Pen (3 boyutlu kalem) ürünü çıkmış oldu. 3D Kalem teknolojisinin gelişmesi de çok uzun sürmedi. İnsanlar bu 3 boyutlu dünyadan günlük hayatlarında da farklı keyifler yaşamak için yani hobi amacıyla alıyorlar genelde 3 boyutlu kalemleri. Aynı zamanda 3D kalemler ile küçük ve basit tasarımları kısa sürede basma imkanına sahip oluyorlar. 3 boyutlu kalemler hakkında daha detaylı bilgiye sahip olmak için 3D Kalem Nedir?yazımızı ziyaret edebilirsiniz.

KAYNAK: https://maker.robotistan.com/3d-yazici-printer/

3D Yazıcı Tarihi

1984: 3D yazıcının patenti alındı.

2008: Açık kaynak kodlu masaüstü 3D yazıcı geliştirildi.

2012: Organovo, 3D yazıcı ile böbrek bastı. 

2012: 3D yazıcı ile otomobil üretildi.

2015: NASA, uzayda 3D yazıcı ile üretim yapmaya başladı. 

2016: Adidas, 36 yazıcı ile ayakkabı tabanı üreteceğini açıkladı. 

2016: New Balance, tabanını 3D yazıcı ile ürettiği ayakkabısını piyasaya sürdü

3D YAZICI TÜRKİYE’DE DE HIZLA YAYGINLAŞTI / 3D KULAK TAMAM, SIRADA KARACİĞER VAR / 3D İLE İNSAN ÖMRÜ UZAYACAK

Gelecek 3D yazıcıların….

“Dünya artık bildiğimiz gibi olmayacak” demişti 3D yazıcının yaratıcısı Chuck Hull yazıcıdan çıkardığı ilk ürününü avuçlarına aldığında… 

Öyle ya; yıllar önce bir yazıcıdan terlik ya da protez el çıkacağını söyleseler, hayal gücü yüksek bir senaristin kaleminden çıkan harikulade bir bilimkurgu filmi diye düşünürdük. 

Oysa kısa süre içinde mesele yazıcıdan terlik, fincan çıkarmanın çok çok ötesine geçecek, sağlık sektörüne olan katkısıyla adeta teknolojik bir devrim halini alacaktı. Eli olmayan bir engelliye protez el bir yazıcıdan çıkacaktı örneğin. Dahası, Mars’taki ev projelerinde bile üç boyutlu yazıcılardan yararlanılacağı açıklanacaktı. Kısaca, Hull’un “Dünya artık bildiğimiz gibi olmayacak” sözü böylece kısa sürede doğrulandı.

Gazete Habertürk’ten Ümran Avcı’nın haberine göre, 3 boyutlu baskı teknolojisi artık eğlence aracı olmaktan çıkarak çok daha büyük işlere imza atıyor. Peki bu iş nereye gidecek? En basitinden, yakın gelecekte çocuklar istediği oyuncağı kendisi yazıcıdan çıkaracak.

“Fırından yeni çıktı” lafı gerilerde kalacak, “3D yazıcıdan az önce aldık” denilecek ve bir anlamda teknolojiyi yiyor olacağız… 

Evlerimizi 3D yazıcılardan çıkan objeler süsleyecek mesela. Ama en önemlisi şimdiden kendini göstermeye başlasa da yakın gelecekte etkisini daha fazla hissettiğimiz alan sağlıkta olacak. 

3D yazıcılardan çıkan kişiye özel protezler hızla artacak. Yazılı ve görsel medyada bundan böyle “3D yazıcıdan çıkan biyonik el, yapay doku” gibi haberleri daha sık göreceğiz. Geleceği 3D yazıcılar kuracak aslında. Bu yazı dizisinde 3 boyutlu yazıcılarla ilgili gelişmeleri dünya ve Türkiye üzerinden takip edip aktaracağız. Sektörde söz sahibi isimlerle yaptığımız röportajlardan 3 boyutlu yazıcıların getirdiği teknolojik yenilikleri öğreneceğiz. Teknolojideki 3 boyutlu gelişmeleri merak ediyorsanız buyurun…

‘DÜNYA ARTIK BİLDİĞİMİZ GİBİ OLMAYACAK!’

Tarih 9 Mart 1983. Uzun bir süredir 3D yazıcı üzerine çalışan Chuck Hull, sonunda büyük buluşunu gerçekleştirmişti ve bu sevinci eşiyle paylaşmak istiyordu. Gece yarısı heyecanla eşini aradı. Yatmaya hazırlanırken vakitsiz çalan telefon, Anntionette Hull’u tedirgin etti. Endişeyle telefonun ahizesini kaldırdı. Karşısında içi içine sığmaz bir ses tonuyla Chuck Hull “Hemen laboratuvara gel!” dedi. 

Bayan Anntionette, üzerindeki pijamaları çıkardı, aracına atlayıp eşinin geceleri çalıştığı mekâna gitti. Devamını kendisinden dinleyelim:

“Yatmak için hazırlanırken Chuck hâlâ çalışıyordu. Telefondaki oydu. Yanına çağırınca yataktan zıpladım, arabaya bindim ve dünyada ilk 3D objeyi görmek için laboratuvara gittim. Yaptığı şey avuçlarının içindeydi. ‘Ve yaptım!’ dedi. ‘Dünya artık asla bildiğimiz gibi olmayacak’ diye devam etti. Ondan sonra güldük ve ağladık. Ve bütün gece geleceği hayal ettik.”

İLK AMELİYAT YAPIŞIK İKİZLERE

Hull çifti o gece geleceği nasıl hayal etti bilemiyoruz ama Hull kısa sürede sevindirici haberleri ABD Teksas’taki WillFord Hall Hastanesi’nden aldı. Teksas’taki çocuk hastanesinde yapışık ikizlerin ayrılmasını gerçekleştirecek olan ameliyatta, 3D yazıcılardan yardım alındı. Hekimler, ayırma sonrasında ikizlerden yalnızca birisinin yürüyebileceğini tahmin etti. Yanılma payına ve risklere karşı 3D yazıcı ile kemik yapısının modellemesi oluşturuldu. 

Bu modelleme sayesinde çok hassas olan bir ameliyat sıfır hatayla sonuçlandı. Başarıyla ayrılan ikizlerden ikisi de yürüyebiliyordu.

Hull bu haberi sevinçle karşıladı: 

“İkizleri ayırmak gerçekten çok zor bir ameliyattı. Ve benim buluşumun ilk defa böyle bir ameliyatta kullanılması bana çok dokundu.” Barack Obama da ABD Başkanı olduğu dönemde 3D yazıcıyı “Geleceğin sanayi devrimini yaratacak teknoloji” diye tanımladı.

PAZAR BÜYÜKLÜĞÜ

Yıllık yüzde 23.7 büyüme 

2015: 5.9 milyar dolar 

2020: 21 milyar dolar 

2025: 49 milyar dolar

Genç Girişimciler İçin Fikirler

Genç Girişimcilerin Fikirlerini Hayata Geçirmesini Sağlayacak 8 Adım

Bütün girişimcilerin ortak noktası harikulade fikirler üretmesidir. Asıl önemli olan ise, fikirlerin unutulup gitmesine izin vermeden onları hayata geçirmektir. Eğer aklınızda iyi olduğunu düşündüğünüz bir fikriniz varsa, işte hayata geçirmek için yapmanız gerekenler;

1) BİR PLANINIZ OLMALI

Birçok başarıya ulaşmış insana göre kilit nokta planlı davranmak. Fikrinizi ürettikten sonra sizi başarıya götürecek planı yapmak, genellikle girişimlerin en zor evresi olarak görülür. Tavsiyemiz ise her şeyi not almanız ve karşılaşabileceğiniz her adım için detaylı planlar yapmanız.

2) ÖZGÜVENİNİZ YÜKSEK OLSUN

Fikrinizi ürettikten sonra başarıya ulaşmak için kendinize güveniniz olmalı. Çok fazla insan beklediğinden daha çok zorluklarla karşılaştığı için kendine güvenini yitiriyor ve fikrini hayata geçirme noktasında başarısız oluyorlar. Tavsiyemiz öngöremeyeceğiniz zorluklarla karşılaşacağınıza hazırlıklı olmanız ve kendinize inanmanız! Çok fazla özgüven ise her zaman zorluklarla karşılaşmanıza neden olabilir. Aradaki dengeyi iyi ayarlamanız gerekiyor.

3) RİSKLERİ KUCAKLAYIN

Risk, bir girişimcinin en yakın dostudur. Yolculuğunuz boyunca karşınıza çıkacak riskleri en doğru şekilde yönetmeniz gerekiyor. Risk almaktan kaçınırsanız, çok büyük olasılıkla ilerleyemez ve yerinizde sayarsınız. Bu nedenle yolculuğunuzda hızlı bir şekilde ilerlemek istiyorsanız, risk yönetimini mutlaka öğrenmeniz gerekiyor.

4) İLETİŞİM ÇOK ÖNEMLİ

Kendilerinden ne beklendiğini bilmeyen insanlar işlerini verimli yapamazlar. Bu yüzden ekip içinde iletişimi maksimumda tutmalısınız. Güçlü liderler, ekibi büyüdükçe iletişim kurmanın zorlaşacağını bilir ve bunun üstesinden gelir. Ekip içi iletişimin dışında, müşteriyle iletişim de en önemli konulardan biridir. Müşterinin beklentilerini ve geri bildirimlerini iyi anlamazsanız, müşterileriniz mutlu olmayacaktır.

5) GELİŞİME AÇIK OLUN

Hiçbir girişim fikri, yaratıcısının aklına son haliyle gelmemiştir. Çok basit fikirler, büyük gelişimlerle başarı hikayelerine dönüştüler. Bu yüzden asla fikrinizin ilk haliyle yetinmeyin. Devamlı geliştirmeye odaklanın ve daha iyi bir noktaya taşıyın. Olaylar arasında bağlantıları görmeye başladığınızda fikrinizi geliştirmek için kendinize meydan okuyun.

6) SABIRLI OLUN

Bir gecede başarılı olmak bir hayalden ibarettir. Defalarca denemeniz, aylarca çalışmanız gerekebilir. Karşınıza çıkacak her olumsuzlukta sabırlı olmanız ve üstesinden gelmeniz gerekiyor. Kısıtlı bütçeler, başarısızlıklar ve sürekli engellerle karşılaşmak, fikrinizin peşinde giderken tecrübe edeceğiniz en gerçekçi şeyler olacaktır. Unutmayın ki Henry Ford, Ford Motors Company’i kurmadan önce 5 kez iflas edip beş parasız kalmıştı. Bunun gibi birçok girişim onlarca başarısızlığın sonucunda başarıyı tadabilmiştir.

7) EKİBİNİZE GÜVENİN

Her takım elemanı motivasyona, eğitime ve onay almadan günlük kararları alma otoritesine ihtiyaç duyar. Bu yüzden ekip üyelerinizden maksimum verimi alabilmek için onlara güvenmeniz gerekiyor. Tabi yanlış kişilere güvenmek de şirketinizde oluşacak ciddi bir tökezlemeye neden olabilir. Bu riski en iyilerle çalışarak azaltmak başarıya giden yolda önemli bir konuma sahip.

8) BÜTÇEYİ DERT ETMEYİN

Günümüzde girişimcilik oldukça önem verilen bir konu haline geldi. Eğer fikrinize gerçekten güveniyorsanın ve insanların ilgisini çekmeyi başarabilirseniz, gerekli fonu sağlamak beklediğinizden çok daha kolay olabilir. Dünyada ‘Crowdfunding’ olarak bilinen, dilimize ‘Kitlesel Fonlama’ olarak geçen konsept, projeniz için gerekli fonu çok kısa sürede sağlayabiliyor. Türkiye’nin ilk girişimci pazar yeri olma özelliği taşıyan Arıkovanı’nda, onlarca proje fonlanarak hayata geçmeyi başardı. Sizin de teknoloji ve inovasyon odaklı bir projeniz varsa, Arıkovanı üzerinden proje başlatarak, destekçilerinize ulaşabilir ve fikirlerinizi hayata geçirebilirsiniz.

Küresel Isınmaya Karşı Çözüm !

Küresel Isınmaya Karşı Yüzen Şehirler

Dünyamızın karşı karşıya olduğu en önemli sorunlardan biri olan küresel ısınma, beraberinde büyük tehlikeler de getiriyor. İklim değişiklikleri sonucunda dünya genelinde sıcaklıkların yükselmesiyle buzulların erimesi, deniz seviyesinde ciddi yükselmelere neden oluyor. Bu da kıyı şehirlerini su altında kalmakla tehdit ediyor.

Bu tehlikeye karşı bilim insanlarının ve mimarların Birleşmiş Milletler’e sunduğu heyecan verici bir proje geçtiğimiz günlerde karşımıza çıktı. Oceanix City! Yüzen şehir olarak tanımlayabileceğimiz bu proje, Birleşmiş Milletler’e bağlı “UN-habitat” kurumunun sürdürülebilir kalkınma hedeflerine bağlı, insan yapımı bir ekosistem öneriyor. Heyecan verici bu proje yeni dünyanın temellerini oluşturuyor olabilir mi?

Projenin detaylarına bakacak olursak, tasarımının sel, tsunami, kasırga gibi doğal afetlere dayanabilecek şekilde planlandığını görüyoruz. Okyanus tabanına demirlenmiş altıgen platformlardan oluşan şehir, ilk etapta 10 bin kişi barındırabilmekte ve kendi enerjisi, tatlı suyu, ısısını üretebiliyor. Özel bir sistemle okyanus tabanına bağlanan platformlar, istendiği zaman tabandan ayrılıp yer değiştirebilecek. Bunun yanında yüzen şehirlere yeni platformlar eklenerek nüfusu artırılabilecek.

Yüzen şehrin altyapısı, su altı minerallerini elektrik akımına maruz bırakarak üretilen bir malzeme olan “Biorock” ile desteklenecek. Kendi kendini onarabilen bu materyal zamanla sertleşerek, betondan üç kat daha sert, ama yüzebilir hale gelebiliyor. Böylece kötü iklim şartlarına karşı en dayanıklı yapıyı üretmek amaçlanıyor.

Oceanix projesi, dayanıklılığı kadar çevre dostu yaşam da vadediyor. Çöpler pnömatik çöp tüpleri ile toplanıp yeniden değerlendirilebileceği istasyonlara taşınacak. Konsepte otonom su araçları, drone teslimatları ve deniz çiftçiliği gibi yenilikçi fikirler de dahil edilmiş. Yüzeyde ise dikey tarım tesisleri bitkileri beslemek için deniz ürünlerinden elde edilecek organik atıkları kullanacak.

Projenin tasarımcısı BIG firmasının Bjarke Ingels ise proje hakkında şöyle bahsediyor: “Dünyanın en büyük 10 şehrinden 9’u, 2050 yılına kadar yükselen denizlere maruz kalacak. Deniz bizim kaderimiz ama aynı zamanda geleceğimiz de olabilir.”

Dijital Modelleme

Dijital Modelleme Sayesinde Tarihimizi Koruyabilir Miyiz?

İklim değişikliği, silahlı çatışmalar, kalkınma ve insan hareketleri sebebiyle tarihi yerlere yönelik tehditler günden güne artıyor. Bu konuda son olarak yaşadığımız Notre Dame Katedrali yangını da bazı gerçekleri gözler önüne serdi.

Peki, bu tehditlerin önüne geçmek ve bu eserleri gelecek kuşaklara aktarmak için tek şansımız fiziksel önlemler ve yaptırımlar mı? İşte tam bu noktada Google Arts & Culture’nin yeni bir fikri var: ¨Dijital Modelleme¨

Neden gerçek dünyanın dijital modellemesine ihtiyaç var? Aslında bunun çok basit bir cevabı bulunuyor. Deniz seviyesinin yükselmesi ile birlikte Venedik’in sular altında kalma tehlikesi, savaşların simge ve eserleri yok etmesi ve son olarak da Notre Dame Katedrali yangını, neden dijital modellemeye ihtiyaç duyduğumuzu gösteriyor. Tarihi mekânların detaylı 3D taslaklarının çıkarılması, dünya tarihi için ¨sigorta poliçesi¨ olarak görülebilir.

Burada amaç, tersine planlanmış planlar sayesinde karmaşık ve benzersiz yerlerin doğru bakım, onarım ve restorasyonunu sağlamak. Bu sayede olası bir felaket durumunda insanlar bu tarihi yapıtların eski hallerini dijital olarak keşfedebilecekler. Konu hakkında konuşan CyArk’ın kurucusu John Ristevski, ¨Talihsiz bir olay yaşandığında, 3D datalardan türetilecek planlar değerli bir başlangıç noktası olabilir.¨ diyerek projenin önemine dikkat çekti.

Google Arts & Culture, geçtiğimiz nisan ayında ¨Open Heritage¨ projesini CyArk ile birlikte başlatmıştı. CyArk, dünyanın kültürel mirasını yakalamak, arşivlemek ve paylaşmak için kurulmuş bir organizasyon.

Dijital koruma, LIDAR adlı bir lazer ölçüm sistemi tarafından yakalanan 3D taramaların üstüne son derece yüksek çözünürlüklü fotoğraflar yerleştirerek çalışıyor.

Notre Dame Katedrali’nin 2010 yılında başka bir firma tarafından görüntülendiğini belirten John Ristevski, ¨Şimdi alınan bu görüntüler restorasyon çalışmaları için bir rehber olabilir.¨ diyerek çalışmaların önemine dikkat çekti.

¨Open Heritage¨ üzerinde kullanıcılar, çok uzaktaki antik tapınakları ya da yamaçtaki mağaraları multimedya dijital turlar ile deneyimleyebiliyorlar.

Bu proje dünya çapındaki insanların ortak küresel tarihimizi dijital olarak belgelemek ve paylaşmak için nasıl çalıştıklarını gözler önüne seriyor.

Yapay Zeka Destekli Fotoğraflar

Fotoğraflarınız Yapay Zeka Desteğiyle 3D Fotoğraflara Dönüşsün!

Yapay zeka dünyası gelişmelerine dur durak demeden devam ediyor.  Şimdi de yeni bir girişim ile karşı karşıyayız; Yapay zeka destekli olarak 3D fotoğrafların derinlik algılarını kendi üreten bir Yapay zeka destekli uygulama derinlik eklenmesi gereken alanları kendi tahmin ederek bulup bu yerlere otomatik olarak net alan derinliği ekliyor. Sonuç mu? Sadece birkaç adımda fotoğraflarınıza net alan derinliği verebilmenizin dakikalar içinde gerçekleşebilmesi.

Fotoğraflarınızı isterseniz bir DPTH’in kamerası üzerinden çekebilir ya da galerinizdeki fotoğraflardan birini seçip kolayca düzenleyebilirsiniz. Düzenlemek için seçtiğiniz fotoğrafınızı DPTH’e eklediğinizde uygulama otomatik olarak fotoğrafı işleme tabi tuttuğunu belirterek, sürecin 10 saniye ile 1 dakika arasında tamamlanabileceğini belirtiyor.

İşlem tamamlandıktan sonra size hemen bir bildirim gönderen DPTH, net alan derinliği eklediği yeni fotoğrafınızı böylece size sunuyor. Ayrıca bu ekranda Depth Map ve ayarlar seçenekleri üzerinden düzenlenen fotoğrafın tüm detaylarını inceleyebiliyorsunuz.

Bu noktada ayarlar üzerinden fotoğrafın derinliğini, blur oranını ya da mesafesini kolayca değiştirmeniz mümkün. Bu değişimleri Depth Map üzerinde yapabildiğiniz gibi doğrudan işlem görmüş yeni görsel üzerinde de deneyimleyebiliyorsunuz. Sonraki adımdaysa bir klasik son adım olarak, oluşturduğunuz yeni derinlik algılı görseli kolayca sosyal ağlarda paylaşabilmeniz ya da direkt olarak telefonunuza kaydedebilmeniz için karşınıza çıkan seçenekler oluyor.

Ama şunu belirtmeden geçmeyelim; paylaştığınız ve kaydettiğiniz görsellere DPTH logosu ekleniyor. Eğer bu logonun görseliniz üzerinde görünmesin istemiyorsanız 18,99 TL ödeyerek profesyonel pakete geçiş yapabilme hakkınız var.  Bu pakete ilerleyen zamanlarda eklenmesi düşünülenler de mevcut; yüksek çözünürlüklü görsel indirme, Depth Map indirme ve 3D animasyon yapma gibi özellikler. Ama bir güzel nokta daha var ki o da yapacağınız bu tek seferlik ödemeyle ömür boyu tüm bu özelliklerden faydalanabilecek oluşunuz. Buradanuygulamayı indirerek detaylı bilgi alabilirsiniz.

Kulağınızdaki Tercüman

Birden fazla yabancı dil öğrenmek için vaktiniz olmayabilir. Ya da dil öğrenme konusunda kendinizi yeteri kadar becerikli hissetmiyor olabilirsiniz. Dünyanın ilk Canlı Tercümanı Tragl sayesinde yabancı arkadaşlarınızla sohbet etmek için dil kursuna gitmenize gerek yok.

“Dünyanın ilk eller serbest Canlı Tercümanı” olarak lanse edilen TRAGL, size birçok yabancı dilde sohbet edebilmeyi sağlıyor. Patentli ses sistemi, tek bir cihazla kullanarak iletişim kurmamıza izin veriyor. TRAGL söylediklerinizi çeviren ve çevirinizi bir hoparlör üzerinden ileten ön mikrofona sahip. Ayrıca karşı tarafın cevabını kulaklığınızdan çevrilmiş bir halde duyabiliyorsunuz. Bu işlemlerin tamamlanması için kimseden bir kulaklık takmasını istemek zorunda değilsiniz.

Aynı dili konuşmadığımızda iletişim kurmak hiç kolay değil ve bu dil problemi oldukça stresli durumlar yaratabiliyor. TRAGL böyle olası durumlar için oldukça kullanışlı görünüyor. TRAGL’ı seyahatte, acil durumlarda, iş toplantılarınızda, arkadaş toplantılarınızda, kısaca her yerde rahatlıkla kullanabilirsiniz.

TRAGL’ın farkı ne?

Diyalog kurmanız için cihazın sadece bir kişide olması yeterli. Ayrıca doğru tasarlanmış kulaklık ve hoparlör tasarımı sayesinde çevrenizdeki kimseyi rahatsız etmiyorsunuz.

Bazı dil seçenekleri için herhangi bir Wi-Fi noktasına bağlı olmanıza gerek kalmıyor. 30 fark dil seçeneği de TRAGL’ın en önemli ayrıcalıklarından.

Nasıl Çalışıyor?

Cihaz, sesinizi ana mikrofondan tanır, çeviriyi ön hoparlörden çevirir ve yeniden üretir. Diğer kişi konuştuğunda, sesi ön mikrofon tarafından tanınır ve kulaklığınıza 1-2 saniye içinde çevrilir.

İletişim insan ilişkilerinde esastır ve dil engelleri tarihimizde iletişim için daima bariyer olmuştur. Neyse ki, teknoloji iletişimi kolaylaştırabilir. TRAGL, dil engellerini azaltmak ve nerede olursanız olun konuşmanıza izin vermek için tasarlanmış ilk eller serbest canlı tercüman olma özelliği taşıyor.

Kitlesel fonlama aracılığıyla destekçilerine ulaşmayı hedefleyen TRAGL, şimdiye kadar 350.000 dolar fon toplamayı başardı ve tahmini teslimat süresi Nisan 2019. Siz de buradan TRAGL’ın kitlesel fonlama sayfasına giderek detaylı bilgi alabilir ve ön sipariş verebilirsiniz.

Lazer Teknolojileri

Lazer Işınlarının Oluşumu ve Özellikleri

Lazer, uyarılmış atomların fotonlarını yayınlama şeklini kontrol eden ve onları uyumlu bir huzme şeklinde oluşturan optik kaynaklardır. İngilizcede, “Light Amplification by Stimulated Emission of Radiation”ın kısaltmasıdır. Yani lazerin nasıl çalıştığını da açıklayan “Uyarılmış Işıma ile Mikrodalga Yükseltici” anlamına gelmektedir.

Tarihte ilk olarak 1917 yılında Albert Einstein uyarılmış ışımayı öne sürmüştür. 1960 yılında Theodore Maiman optik frekansta lazer hareketini gerçekleştirmiş ve yakut lazeri bulmuştur.

Lazerin elde edilmesi için atomları uyarılma eşiğinin üzerine çıkarmak üzere enerji verilir. Genel olarak uyarılmış atomların seviyesi, temel seviyenin 2 ya da 3 seviye üzerindedir. Bu, popülasyon terslenmesinin (population inversion) seviyesini artıracaktır. Popülasyon terslenmesi, temel seviyedeki atomlara karşı uyarılmış atomların sayısıdır. 

Uyarılmış atomlar, bulundukları yörüngelerden daha düşük enerjili yörüngelere düştüklerinde açığa çıkardıkları enerji, salınan fotonun enerjisine eşittir. Bu enerji fotonun dalga boyunu belirler, dolayısıyla da açığa çıkan ışığın rengini belirler.

Lazer ışığının özelliklerini aşağıdaki gibi sıralayabiliriz:

> Tek renklidir, yani tek bir dalgaboyuna sahiptir.

> Koherenttir. Yani düzenlidir.

> Tek yönlüdür ve aynı zamanda çok güçlü, konsantre ve ince bir ışındır. 

Lazer Çeşitleri

  •  Katkılanmış Yalıtkan Lazer
  •  Yarı İletken Lazer
  •  Gaz Lazer
  •  Darbeli Boya lazer

Lazerin Kullanım Alanları

  1.  Üretim Teknolojileri

Tablo 1. Lazer Tipleri ve Kullanılan Gazlara Göre İmalat Sanayide İşlevleri

GazlarKarbondioksit LazeriNd:YAG Lazeri
OksijenKesmeKesme
AzotKesmeKesme
HelyumKesmeKaynak
ArgonKesme

 İmalat sanayi kullanımındaki avantajları

  •  Birkaç mikron mertebesindeki bölgelere odaklanabilme kabiliyeti 10W/cm’nin üzerindeki yüksek güç yoğunluğu sebebiyle tungsten gibi yüksek ergime sıcaklığı olan metaller kendiliğinden ergirler ve ısıya duyarlı civar bölgeler üzerindeki etki minimuma iner.
  •  Lazer ışını temassız olarak çalışır, yani takım ile iş parçası arasında hiçbir mekanik temas oluşmaz ve iş parçasının istenmeyen alaşımlanması veya bozunumu önlenmiş olur.
  •  Kaynak süresi, iri taneli olma, tekrar kristalleşme ve segregasyon gibi uygun olmayan içyapı değişimlerine engel olacak ve hızlı üretimi sağlayacak kadar kısadır.
  •  Lazer ışının üretimi mikro plazma kaynağındaki gibi koruyucu gazların kullanılmasını, elektron ışını ile kaynaktaki gibi vakumun sağlanmasını gerektirmez.
  •  Bu sebepten bilhassa seri imalat için, üretim hızı, otomatize edilebilmesi imkânı gibi üstünlükleri vardır.
  •  Isı girdisi düşük olduğundan ısıdan dolayı gerçekleşecek metalürjik etkiler ve çarpılma düşük olacaktır.
  •  Elektroda ihtiyaç yoktur. Bu nedenle elektrottan kaynaklanacak kirlenmelerin önüne geçilmiş olmaktadır.
  •  Lazer ışını optik elemanlar kullanılarak kolaylıkla odaklanıp, doğrultulup yönlendirilebildiği için diğer kaynak yöntemleri ile ulaşılması zor olan yerlerde kaynak yapılabilmesini sağlar.
  •  Geniş bir malzeme aralığı ve bunların kombinasyonunu kaynaklamak mümkündür.
  •  Lazer ışını, elektron ışın kaynağında olduğu gibi manyetik alandan etkilenmez.
  •  Vakum veya X-ışını koruması gerektirmez.
  1.  Bilişim Teknolojileri 

Verilerin boyutları büyüdükçe daha hızlı ve daha güvenli veri aktarım yöntemleri üzerindeki çalışmalar artmaktadır. Bu alandaki en önde gelen alternatiflerden biri olan lazerle veri aktarımı konusunda çalışmalar aralıksız devam etmektedir.

İlk olarak 1990’larda çalışmalarına başlanan lazerle veri aktarımı, laboratuvar ortamında gerçekleştirilen deneylerle geliştirilmektedir. Kısa mesafelerde saniyede 2.5 terabit veri transferi sağlayabilen sistemler geliştirilmiştir. Böylece süper hızlı veri transferi gerçek zamanlı olarak gerçekleştirilmeye başlanmıştır. Bu sistemlerle birlikte ikili sayı sistemiyle verileri 16 farklı ışık çeşidiyle yansıtmakta, resimlerinde her bir pikselini kodlayarak gönderilebilmekte ve karşı tarafta kodlar çalıştırılarak resimler açılabilmektedir.

Son zamanlarda özellikle sosyal medyada yüksek çözünürlükte veri paylaşımı kullanıcılar arasında yaygınlaşmaktadır. Bu sebeple özellikle sosyal medya şirketleri lazer tabanlı internet teknolojisi kullanarak hızı ve kaliteyi artırmayı hedeflenmektedir.

Ayrıca uydu haberleşmesinde kullanılan elektromanyetik dalgaların ve sinyallerin girişimlere duyarlı olması, mesafeye bağlı olarak enerjilerinde kayıpların yaşanması lazerle iletişimi önemli hale getirmiştir. Buna bağlı olarak, 18 Ekim 2013 tarihinde Ay ve Dünya arasında lazer ile veri iletimi gerçekleştirilmiştir. Massachusetts Institute of Technology (MIT) ve NASA’dan bir grubun yaptığı çalışma sonucunda Dünya yüzeyinden Ay yüzeyine 622 Mbit/s veri gönderilmiştir.

  1.  Sağlık Teknolojileri

1960’lı yıllarda cerrahi amaçlı ilk kullanılan lazer yüksek güçlü ve dokuda kolayca buharlaşma yapabilen CO2’li lazer olmuştur.

Lazerin Tedavi Amaçlı Kullanıldığı Alanlar

  •  Böbreklerde taş kırma,
  •  Kalp ve damar cerrahisi,
  •  Beyin cerrahisi,
  •  Sindirim sistemi rahatsızlıkları,
  •  Deri hastalıkları,
  •  Kulak burun boğaz hatalıkları,
  •  Ortopedik problemler,
  •  Estetik ameliyatlar.
  1.  Savunma ve Uzay Teknolojileri

Lazer sistemleri savunma sanayide kullanımı yaygınlaşmaktadır. Özellikle yüksek enerjili lazerin imhası “soft death” yani “yumuşak ölüm” olarak adlandırmaktadır.

  •  Lazer takviyeli konvansiyonel kimyasal patlayıcı ateşli silahların geliştirilmesinde (lazer cihazları),
  •  Askeri kontrol, gözetleme, ölçme, analizlerin uygulanmasında (lazer cihazları),
  •  Dolaylı olarak askeri silahların, araç, gereçlerin üretim süreçlerinde (lazer üretim yöntemleri),
  •  Doğrudan kalıcı ya da geçici imha edici lazer silahların yapımlarında (lazer silahı). 

Yüksek enerjili lazerlerin tespit edilmemesi sebebiyle gelişmiş ordularda lazer silahları lazer güdümlü füzeler kullanılmakta ve yüksek isabet oranıyla istenilen çözüm elde edilmektedir.

Lazer ile birlikte, tahribatsız olarak numunelerden kümülatif olarak bilgi alınabilmekte ve numunelerin atomik boyutta yapıları ortaya çıkarılmaktadır. Diğer taraftan atmosfer ve bileşenlerinin üç boyutta tespit ve teşhisi yapılabilmekte ve gerekli ölçüm hesaplamalar ortaya konmaktadır. Böylece havacılıkta kullanılan malzemelerin uygunluğu uçak, helikopter gibi araçların seyrüsefer kontrolleri lazer sistemleri aracılığıyla gerçekleştirilmektedir.

Savunma sanayide lazer füzelere veya bombalara üzerlerinde olan lazer algılayıcı sensörler ile yol göstermek, rota belirlemek amacıyla kullanılmaktadır. Ancak bugün özellikle uçaksavarlarda, deniz kuvvetlerinde, insansız hava cihazlarında, uçak ve helikopterlerde bir karşı savunma cihazı olarak kullanılmaktadır. Gücü 20 Kw ve üstü değerine ulaşabilen lazer silahlar bazı ordularda kullanılmaya başlamıştır.

  1.  Hologram

Hologramlar, fazlasıyla ilgi çekicidir ve göze hitap etmektedir. Holografi, üç boyutlu dünyamızı iki boyutlu ortam üzerine kaydederek hiçbir yardımcı araç kullanılmasına gerek kalmadan çıplak gözle iki boyutlu ortam üzerinde her üç boyutu da görebilmemizi sağlayan kayıt ve görüntü teknolojisidir.

Hologram, orijinal objenin üç boyutlu gerçek kaydı, kısaca üç boyutlu lazer fotoğrafıdır. Başka bir deyişle; 3 boyutlu görsel bilginin lazer teknolojisiyle kaydedilmesi, depolanması ve hareket efektinin kazandırılarak çok boyutlu ortama aktarılması sonucu elde edilir.

Holografide uyumlu lazer ışınının pozitif teması ile dalga sınırlarını eşleştirerek kayıt yapılır. Bu üç boyutlu kayıt kırılmış bir şablon şeklinde oluşur; bir dizi çok ince çizgi veya tek merkezli daireler halindedir. Bu kırılma, ışığı bükerek lazer ışığının orijinal kaydın dalga sınırına geri gönderir. Objenin üç boyutlu görüntüsü hologram ışık olarak yapılanır. Hologram, fizik, kimya, basım, mühendislik gibi pek çok kavramın hepsini birden içinde barındırdığı için gelişmiş ve karmaşık bir üründür.

Hologramlar derinlik ve paraleks içerdiğinden, objeyi ve çevresindekileri daha da derinlik içinde görülmesini sağlar. Hologramların taranması, fotokopi yoluyla çoğaltılması veya aynısının basılması mümkün değildir. Hologramlar, aynı zamanda uygulandıkları yüzeyden ayrıldıklarında bozunuma uğramaktadır. Böylece hologramların amaç dışı kullanılması mümkün olmamaktadır.

Gelecekte, özellikle günümüzde kullanılan LED televizyonların yerini hologram teknolojisiyle çalışan televizyonların alması beklenmektedir. Ayrıca, lazerin görüntü teknolojilerinde kullanılmasının geliştirilmesiyle artırılmış/sanal gerçeklik uygulamalarında, bilgisayar oyunlarında hologram teknolojisinin kullanılması ve yaygınlaşması beklenmektedir.

1970’lerde “holografik veri depolama” yöntemini geliştirilmesiyle normal hologramlarda olduğu gibi bir nesnenin görsel kopyasını kaydetmek yerine bir veri dizisi kaydedilmektedir. 1 ve 0’dan oluşan ikili veri dizisi, aydınlık ve karanlıktan oluşan bir ışık dizisi olarak yansıtılmasıyla verinin depolama ve iletim işlemi gerçekleştirilmektedir. Gelecekte özellikle büyük verinin iletimi ve depolanması daha da önem kazanacağından holografik belleklerin kullanımı yaygınlaşacaktır.

Genel Değerlendirme ve Sonuç

Lazer teknolojisinin dünyada önemli bir çalışma alanı olarak her geçen gün önemini artırmaktadır. Ülkemizde üniversitelerimizde lazer çalışmaları ile ilgili kurulmuş olan araştırma merkezleri faaliyet göstermektedir. Bu araştırma merkezlerinde malzeme, sağlık ve imalat teknolojilerinde ileri düzeyde çalışmalar yapılmaktadır.

Diğer taraftan özellikle savunma sanayinde, takım tezgâhı üretimi yapan firmalarda lazer sistemleri konusunda çalışma yapan Bakanlığımız destekli Ar-Ge merkezleri de faaliyet göstermektedir.

Bu sebeple özellikle makine ve tıbbi cihaz ithalatı fazla olan ülkemizde lazerli sistemlerin geliştirilmesi yüksek katma değerli ürün üretimi ve ihracatını artıracaktır. Ayrıca savunma sanayinde lazer sistemlerine yönelik ürünlerin üretilmesi bu alandaki ihracat potansiyelimizi artıracaktır.

Kaynaklar

  1.  “Lazer Nasıl Çalışır?”, www.elektrikport.com.tr
  2.  Kaçar, Elif “Sanayide Lazer Uygulamaları ve Güvenliği” İş Sağlığı ve Güvenliği Sempozyumu, Ankara, 2015.
  3.  “Lazer Kaynağı”, Sakarya Üniversitesi.
  4.  Körpınar, M. Ali. “Lazerin Biyofiziksel Özellikleri ve Medikal Uygulamaları”.
  5.  TÜBİTAK MAM, Lazer Teknolojileri Laboratuvarı.
  6.  TÜBİTAK BİLGEM, Elektro-Optik Lazer Sistemleri.

Kuantum Bilgisayarlar

İnsanlar tarih boyunca özellikle ticaret konusunda sayısal hesaplamalara yardımcı olacak araçlar aramıştır. Abaküsün kullanılmasıyla bu yolculuk başlamıştır. 1940’lı yıllarda ise ilk dijital bilgisayar kullanılmaya başlanmıştır. İlk yıllarda işlemcilerin hızları 1-20 MHz arasında idi. Şuan standart ev/ofis bilgisayarlarının işlemci hızları GHz ile ölçülmektedir. Ayrıca sadece işlemcilerin hızları değil mimarileri de çok büyük bir değişime uğramıştır ve en basit örnek ise şu anki işlemcilerin çok çekirdekli olmalarıdır bu da problemler eğer birden fazla parçaya ayrılabiliyorsa o zaman çoklu çekirdekler hesaplamaların çok daha hızlı yapılmasına olanak sağlıyor demektir. Ancak son yıllarda teknolojinin hızlı bir şekilde gelişiyor olması, nesnelerin internetinin daha fazla konuşulması, yapay zekâ, makine öğrenimi örneklerini artması ve verilerin artık işlenmesinin çok zaman alması insanları yeni bir teknolojinin kullanımına itmiştir. Bazı noktalarda geleneksel bilgisayarların hatta süper bilgisayarların hesaplama gücü artık yetersiz kalmaya başlamıştır ve başlayacaktır. Bu sebeple kuantum bilgisayarlar konusunda çalışmalar hız kazanmıştır.

Kuantum Bilgisayar Nedir?

Kuantum bilgisayarlar, işleme bilgisine yeni bir yaklaşım getiren inanılmaz derecede güçlü makinelerdir. Kuantum fiziğinin prensiplerini kullanır ve geleneksel bilgisayarların çok ötesinde bir hesaplama gücüne sahiptir.

 Kuantum bilgisayarlarda, bir qubit kuantum bilgisinin birimidir. Bir kuantum sistem klasik bitleri kuantum bitler (qubitler) ile değiştirir. Klasik bitler 0 ya da 1 değerini alabilirken qubitler süperpozisyon yöntemini izler ve aynı anda hem 0 hem de 1 olarak var olabilir yani aynı anda tüm olasılıklara sahiptirler. Bu, kuantum hesaplamanın gücünün anahtar unsurudur ve qubitleri kullanan bir bilgisayarın, klasik bir bilgisayardan daha az enerji kullanarak çok daha büyük miktarda bilgi depolayabileceği anlamına gelmektedir. Qubitlerin bu durumunun sebebi ise kuantum bilgisayarların yukarı spin, aşağı spin veya hem yukarı hem de aşağı spinli durumda olan elektron spinine veri kaydedebilmesidir. Bu yüzden de kuantum bilgisayarların temel veri birimine bit değil qubit denmektedir. 

Kuantum bilgisayarlarda bitler yerine qubitler kullanılarak tek bir veri girişi ile istenen veri çıktısı çok daha hızlı elde edilir. Örneğin; 4 klasik bit ile 16 farklı kombinasyon tek tek denenerek istenen 4 bitlik veri çıktısı elde edilebiliyorken 4 qubit ile bir kuantum bilgisayarın üstlenebileceği hesaplamaların sayısı 2n (n=qubit sayısı) olduğu için 16 farklı kombinasyon aynı anda elde edilmektedir. Bu sayede kuantum bilgisayarlar karmaşık problemleri geleneksel bilgisayarlara göre çok daha hızlı çözmektedirler. Örneğin; gelecekte 5000 qubitlik bir bilgisayar oluşturulursa üstlenebilecek hesaplamaların sayısı  25000 gibi çok büyük bir sayı olacaktır ve çok karmaşık problemlerin altından kalkmak çok daha kolay olacaktır. 

Kuantum Algoritmalar

Kuantum bilgisayarlar geleneksel algoritmaları çalıştırabilse de sonuç, özel kuantum algoritmalarını kullanırken olduğu kadar verimli olmayacaktır. Teori olarak, kuantum algoritmaları yirmi yıldan uzun süredir araştırma konusu olmuştur. Şu anda, Shor ve Grover gibi kuantum bilgisayarlara ayrılmış çeşitli algoritmalar bulunmaktadır. 

Geleneksel bilgisayarlar sıralı olarak çalıştıklarından, çok büyük veya karmaşık sorunların üstesinden gelmek için pratik değildirler. Örneğin, çok büyük sayıları asal çarpanlarına ayırmak için bilinen bir çözüm yoktur; bilgisayarlar sadece deneme yanılma yoluyla tahmin etmek zorundadır ve denemelerin sayısı rakamların sayısına bağlı olarak eksponansiyel şekilde artarak büyür. Geleneksel bilgisayarların aksine, kuantum bilgisayarlar problemlere aynı anda odaklanır; aslında tüm olası çözümleri bir kerede ele alır ve çalışmayanları atar. Bazı problemler için, bir kuantum işlemcisi için çözüm süresi, boyutların sayısına bağlı olarak eksponansiyel olarak değil, doğrusal olarak büyür bu da büyük bir hız avantajı sağlar. Büyük bir sayının asal çarpanlara ayrılması, kuantum yaklaşımıyla (Shor algoritması olarak bilinen belirli bir matematik çözümü) çok kısa sürelerde çözülebilen bir üstel hesaplama problemidir. 

Makine öğrenimi uygulamaları için kritik olanlar da dâhil olmak üzere, yapılandırılmamış aramayı içeren problemleri çözmek için gereken süre, problem büyüklüğü ile eksponansiyel olarak artmaktadır. Grover algoritması gibi kuantum matematik çözümleri, yapılandırılmamış arama için orta seviyede bir hız avantajı (problem büyüklüğünün karekökü ile orantılı olarak) vaat ediyor. Bugün, büyük ölçekli arama ve makine öğrenimi problemleri Nvidia gibi şirketler tarafından üretilen birden fazla çok büyük, özelleştirilmiş grafik işleme birimleri aracılığıyla ele alınmaktadır.

Kuantum Bilgisayarların Değiştireceği Alanlar

Şuan geleneksel bilgisayarlarda yapıldığı gibi, sorunları adım adım yavaşça gidermek yerine, kuantum bilgisayarlar tüm sorunu tek seferde ele almaktadır. Bu, finansal hizmetlerden ulusal güvenliğe kadar her alanda çok büyük gelişmeler için kapıyı açmaktadır. 

Belki de kuantum bilgisayar şirketi D-Wave’in kurucu ortağı Eric Ladizinsky, WIRED 2014 konferansında sıradan bir bilgisayar ve kuantum bilgisayar arasındaki farkları en iyi şekilde açıklamıştır. “Kongre Kütüphanesi’ndeki 50 milyon kitap arasındaki bir kitabın bir sayfasına yazılmış bir X’i bulmak için sadece beş dakikanız olduğunu hayal edin. Bu senaryoda, normal bir bilgisayar olacaksınız ve X’i asla bulamayacaksınız. Ancak, eğer 50 milyon paralel gerçekliğe sahip olsaydınız ve bu gerçekliklerin her birinde farklı bir kitaba bakabilseydiniz (bir kuantum bilgisayar gibi), X’i bulurdunuz. Bir kuantum bilgisayar, işi hızlı yapmak ve kolay hale getirmek için sizi 50 milyon versiyonunuza ayırır.”

-Çevrimiçi Güvenlik 

Kuantum bilgisayarlar, mevcut bilgisayarlardan tamamen farklı ilkeler üzerinde çalışırlar, bu da onları çok büyük asal sayıları bulmak gibi belirli matematik problemlerini çözmek için çok uygun hale getirir. 

Kuantum bilgisayarların yaygın olarak benimsenmesi durumunda çevrimiçi güvenlik için iyi ve kötü taraflar olacaktır. Kötü olan kısım mevcut veri şifreleme teknikleri artık kullanılmayacaktır. Şu anda, çevrimiçi güvenlik yöntemlerinin çoğu, bilgisayarların şifre için büyük sayıları üretmesinden dolayı için “kodu kırmak” için olağanüstü zaman harcandığı gerçeğine güvenmektedir. Asal sayılar kriptografide çok önemli olduğu için, kuantum bilgisayarların, çevrimiçi bilgilerimizi güvende tutan pek çok sistemi çabucak çözmesi olasıdır. Kuantum bilgisayarlar bu bilgileri bilgisayarlarımız, finansal kurumlarımız ve özel bilgilerimizi savunmasız bırakarak hızlı bir şekilde işleyebilecektir. Bu risklerden dolayı, araştırmacılar kuantum hacklemeye karşı dayanıklı teknolojiyi geliştirmeye çalışmaktadırlar. 

İyi olan taraf ise, bir mesajı deşifre etmek için bir anahtar gerektiren ultra güvenli bir iletişim yöntemi olan kuantum anahtar dağıtımı gibi kuantum şifreleme yöntemleri geliştirmek için önemli çalışmalar yapıldığıdır. Kuantum mekaniğinin kendine has özellikleri sayesinde, mesajın kesilmesi durumunda, başka kimse okuyamamaktadır. 

-Büyük Veri

Her gün yaklaşık 4 exabyte veri üretilmektedir. Bu ortalama 400.000 büyük kütüphane ya da 8 milyon dizüstü bilgisayar içeriğine denk. Her günün her dakikasında 4 milyardan fazla küresel internet kullanıcısı mesaj göndererek, fotoğraf ve video çekerek, belge kaydederek, paylaşım yaparak veri merkezlerini beslemeye devam etmektedir. Büyük veri, karmaşıklık ve hacimde, hesaplama kaynaklarından daha hızlı büyümektedir. 

Veri kümelerimizin karmaşıklığı ve boyutu, bilgi işlem kaynaklarımızdan daha hızlı büyümekte ve bu nedenle bilgi işlem yapımıza ciddi bir yük katmaktadır. Günümüzün bilgisayarları bazı problemleri çözmekte zorluk yaşıyor ya da çözemiyorken, aynı problemlerin kuantum hesaplamanın gücü ile saniyeler içinde çözülmesi beklenmektedir. 

Büyük verinin üstesinden gelmek için farklı bir hesaplama yaklaşımına ihtiyaç duyulan ve bilgisayar mimarimizi değiştirmemize sebep olan büyük veri artışının olduğu bir noktada bulunulmaktadır. Yalnızca kapsamının daha büyük olması değil, çözülmeye çalışılan sorunlar da çok farklı. Kuantum bilgisayarlar sıralı problemleri verimli bir şekilde çözmek için daha donanımlıdır. 

Ayrıca, çok farklı veri kümelerinin entegrasyonu nedeniyle kuantum bilgisayarların mevcut olması durumunda büyük atılımlar beklenmektedir. Her ne kadar insan müdahalesi olmadan bunun olması zor olsa da, insanların katılımı, bilgisayarların gelecekte verileri nasıl entegre edeceğini öğrenmesine yardımcı olacaktır. Dolayısıyla, kendilerine bağlı benzersiz bir şemaya sahip farklı ham veri kaynakları varsa ve bir araştırma ekibi bunları karşılaştırmak istiyorsa, bir bilgisayar verileri karşılaştırmadan önce şemalar arasındaki ilişkiyi anlamak zorundadır. Bunu başarmak için, yapay zekâda en büyük zorluklardan biri olan doğal dilin semantiklerinin analizinde atılımlar gerçekleşmelidir. Ancak, insanlar gelecekleri için sistemi eğiten girdiler verebilir.

-Yapay Zekâ

Yapay zekâ, özellikle makine öğrenimi, öğrenme için büyük veri setlerine dayanır, fakat aynı zamanda öğrenme sürecini eksponansiyel şekilde hızlandırmak için kuantum hesaplamadan yararlanır. 

Makine öğrenimini geliştirmek için kritik öneme sahip olan bilgi işleme, kuantum hesaplama için idealdir. Kuantum bilgisayarlar, yapay zekâ makinelerinin performanslarının iyileştirilmesi için gereken geri bildirimi sağlamak için büyük miktarda veriyi analiz edebilir. Kuantum bilgisayarlar, geleneksel bilgisayarlardan çok daha verimli geri bildirim sağlamak için verileri analiz edebilir ve bu nedenle yapay zekâ makineleri için öğrenme eğrisi kısalır. Tıpkı insanlarda olduğu gibi, kuantum bilgisayarlardan elde edilen bilgilerle desteklenen yapay zekâ makineleri deneyimlerden ve kendi hatalarını düzelterek öğrenebilirler. Kuantum bilgisayarlar yapay zekânın daha fazla sektöre yayılmasına yardımcı olacak ve teknolojinin çok hızlı bir şekilde daha sezgisel olmasına yardımcı olacaktır. 

-İlaç Geliştirme ve Kimya 

Etkili bir ilacın geliştirilmesi amacıyla kimyagerler, ilaçların belirli koşulları veya hastalıkları iyileştirip iyileştirmediğini görmek için, moleküller, proteinler ve kimyasallar arasındaki etkileşimleri değerlendirmek zorundadırlar. Analiz edilen olağanüstü miktardaki kombinasyonlar nedeniyle, bu zaman ve emek yoğundur. Kuantum bilgisayarlar aynı anda birden çok molekülü, proteini ve kimyasalları inceleyebildiğinden, kimyagerlerin uygun ilaç seçeneklerini daha hızlı belirleyebilmelerini mümkün kılmaktadır. Kuantum hesaplama, bir kişinin genlerinin bugün kullandığımız yöntemlere göre çok daha hızlı sıralanmasına, analiz edilmesine ve kişiselleştirilmiş ilaç gelişimini sağlar. 

Araştırmacılar, geleneksel süper bilgisayarların pek de iyi olmadığı bir görev olan karmaşık kimyasal reaksiyonları modellemek için kuantum bilgisayar kullanma ihtimalinden söz etmektedirler. Temmuz 2016’da, Google mühendisleri, bir hidrojen molekülünü ilk kez simüle etmek için bir kuantum cihaz kullandılar ve onlardan sonra IBM, daha karmaşık moleküllerin davranışlarını modellemeyi başardı. Araştırmacılar, eninde sonunda tıpta kullanılmak üzere tamamen yeni moleküller tasarlamak için kuantum simülasyonları kullanabileceklerini umuyorlar. Ancak kuantum kimyagerler için belki de en önemli şey, Haber-Bosch sürecini – hala nispeten verimsiz olan yapay olarak amonyak üretmenin bir yolu – modellemektir. Araştırmacılar, bu reaksiyonun içinde neler olup bittiğini öğrenmek için kuantum mekaniğini kullanabilirlerse, süreci daha verimli hale getirmek için yeni yollar bulabileceklerini umuyorlar.

-Hava Durumu ve İklim Değişikliği Tahminlerinin İyileştirilmesi

Karmaşık araçlarla bile, hava tahminleri bir tahmin oyunu olarak kalmaktadır. Kuantum bilgisayarlar tüm verileri bir kerede analiz edebildiğinden, meteoroloji uzmanları, insanların hayatlarını kurtarmak, ızdırapları ve oluşabilecek para kaybını önlemek için kötü havanın ne zaman insanları vuracağı konusunda daha iyi bir fikre sahip olacaklardır. Birleşik Krallık’ın ulusal hava durumu servisi olan UK Met Office, tahminlerin iyileştirilmesine yardımcı olmak için kuantum hesaplama teknolojisine çoktan yatırım yapmış durumda. İklimi nasıl etkilediğimize dair daha fazla bilgi edinebiliriz, çünkü kuantum bilgisayarlar daha iyi iklim modelleri oluşturmamıza yardımcı olacaktır. İşlerin beklenen şekilde nasıl değişeceğini ne kadar erken bilirsek, iklim değişikliği ve etkisine o kadar iyi hazırlıklı oluruz ve cevap veririz. 

-Trafik Kontrolü

Havada veya yerde olsun, kuantum bilgisayarlar trafik kontrolünü kolaylaştırmaya yardımcı olacaktır. Verimli zamanlamaya olanak tanıyan ve trafik sıkışıklığını azaltan optimum rotalar eşzamanlı olarak hızlı bir şekilde hesaplanabilecektir. Benzer nedenlerle, kuantum bilgisayarlar tedarik zincirlerini, hava trafik kontrolünü, filo operasyonlarını ve teslimatları optimize etmek için çok güçlüdür.

Kuantum Bilgisayarların Geleneksel Bilgisayarlara Kıyasla Sahip Olduğu Avantajlar 

Kuantum bilgisayarlar atomları ve atom altı parçacıkları fiziksel sistemleri olarak kullanırlar ve hesaplamada bitler yerine qubitler kullanıldığı için çok daha fazla bilgi daha hızlı şekilde işlenir. Bir kuantum bilgisayar, geleneksel bir süper bilgisayarın binlerce veya milyonlarca yıl sürecek hesaplamalarını saniyeler içinde çözebilir. Mevcut süper bilgisayarlar, 20 qubit veya daha azına sahip bir kuantum bilgisayar kadar iyi performans gösterebilir, fakat 50 qubit itibariyle kuantum bilgisayarlar üstünlük kazanacaktır. 

Kuantum bilgisayarların ilk pratik uygulamalarından biri kriptografi olacaktır. Kuantum kriptografi veya daha doğru bir şekilde kuantum anahtar dağılımı, iki uzak nokta arasında bir şifreleme anahtarının dağıtımı için bir dizi protokol olup kuantum fiziği yasaları yoluyla iletimin güvenliğini sağlar. İletişimde yeni bir dönem vaat eden kuantum kriptografinin potansiyeli şimdiden ortaya çıkmıştır. Son zamanlarda Çinli araştırmacılar, kuantum anahtar dağılımının ilk uygulamasını, kuantum dolaşıklığı sayesinde, 1200 km’nin üzerinde bir mesafeden hacklenemez şekilde kodlanmış bir mesaj ileterek gerçekleştirdiler. 

Kuantum işlemciler, tasarımları sayesinde güç tüketimini 100 ile 1000 arasında bir oranda önemli bir ölçüde azaltmaları mümkün olabilecektir.

Kuantum Bilgisayar Teknolojisinde Şu Anki Durum  

Bu teknoloji için büyük oyuncular masada yer almaktadır. IBM 2017’nin sonlarında 50 qubitlik kuantum bilgisayarı ve Intel yakın bir zamanda 49 qubitlik bir yonga duyurdu. Intel ayrıca silikondan kuantum çipleri üretmenin bir yolunu bulduğunu açıkladı ve bu da mevcut üretim yöntemlerini kullanarak çip üretmeyi daha kolay hale getirdi. IBM ve Intel sadece 2 ay sonra, Google tarafından 72-qubit işlemci olan Bristlecone yongasıyla yarışın dışarısında bırakıldılar. Microsoft, MIT, Yale ve Oxford gibi diğer büyük teknoloji şirketleri ve araştırma enstitüleri de bu alanda aktif olarak yer almaktadır. 

Kuantum hesaplama hiçbir şekilde iki atlık bir yarış değildir. Kaliforniyalı startup Rigetti, sadece qubit sayısından ziyade kendi sistemlerinin istikrarına odaklanmaktadırlar ve insanların gerçekten kullanabileceği bir kuantum bilgisayar oluşturan ilk şirket olabilirler. Vancouver merkezli bir şirket olan D-Wave, pek çok araştırmacının D-Wave sistemlerini gerçek kuantum bilgisayar olarak kabul etmiyor olmalarına rağmen, 2000 qubitlik sistem oluşturmuştur.

Kuantum Bilgisayarların Geleceği

Kuantum matematiği kullanan algoritmalar, arama, kriptografi ve makine öğrenimi gibi alanlarda veri yoğun uygulamaları büyük ölçüde hızlandırarak değerlerin kilidini açabilir. Gelecekte, kuantum kuzenlerini yardım için çağıran klasik bilgisayarlardan oluşan hibrid sistemler, günümüzde zor olan sorunları çözecektir.

Kuantum bilgisayar pazarının üç kuşak boyunca gelişmesi beklenmektedir. İlk olarak, 2018’den 2028’e, mühendisler, düşük karmaşıklık simülasyonları gibi uygulamalar için tasarlanan evrensel olmayan kuantum bilgisayarlar geliştirilecektir. Bu bilgisayarların çoğunun gelişimi önümüzdeki birkaç yıl içerisinde gerçekleşecek ve ikinci nesil gelene kadar kullanımda olacaktır. 

İkinci nesil (2028–2039) kuantum bilgisayarların 50 mantıksal qubite kadar ölçeklendikleri ve klasik hesaplama üzerinden “kuantum üstünlüğü”ne sahip oldukları, yani spesifik uygulamalarda belirli algoritmaları daha hızlı gerçekleştirebilecekleri dönem olacaktır. Bu ikinci nesil kuantum bilgisayarlar, moleküler simülasyon, Ar-Ge ve yazılım geliştirme gibi sorunlara odaklanacaktır. Bu dönemde, kullanılabilir uygulamalar piyasaya çıkacak ve önemli bir değer yaratacaktır. Aynı zamanda, kuantum bilgi işleme bir alan olarak daha da gelişecek ve şirketler kuantum simülasyon yöntemlerine daha aşina olacaklardır. 

Üçüncü kuşakta (2031–2042) kuantum bilgisayarlar, klasik yöntemlere göre önemli avantajlarla, simülasyon, arama ve optimizasyonda ticari kullanım için gelişmiş simülasyonlar gerçekleştirmek için gerekli ölçeğe ulaşacaklardır. Moore Kanununun ölçeklendirilmesi ve kuantum hesaplamanın belirli uygulamalarda ikili hesaplamanın üstesinden geldiği eşikler nedeniyle, ikinci ve üçüncü kuşaklar arasında ciddi bir çakışma vardır. Genel bir yörünge olarak, yaklaşık 2030’dan sonra kuantum hesaplamada on yıl süren istikrarlı bir ilerlemenin ardından önemli bir ivme beklenmektedir.

Sonuç

Kuantum bilgisayarlar, dijitalleşmenin hızlı bir şekilde artması ile beraber ortaya çıkacak büyük sorunların çözümü için büyük önem teşkil etmektedir. Çünkü geleneksel bilgisayarların hesaplama gücü, dijitalleşmenin hızı karşısında şimdiden yetersiz kalmaya başlamıştır. Şuan büyük firmaların bu teknolojinin geliştirilmesi konusunda büyük bir yarış içerisinde olması, teknolojinin piyasada daha erken kullanılabilir hale geleceğinin bir göstergesidir. Ayrıca kuantum bilgisayarların diğer işletmelere ve hatta tüketicilere daha iyi kararlar verebilmelerini sağlayan gücü, diğer şirketleri de bu teknolojiye yatırım yapmaya ikna etmek için gerekli olan unsur olacaktır.

 Kaynakça

1. https://www.research.ibm.com/ibm-q/learn/what-is-quantum-computing/

2. https://www.forbes.com/sites/bernardmarr/2017/09/05/how-quantum-computers-will-revolutionize-artificial-intelligence-machine-learning-and-big-data/#455a1265609b

3. https://www.forbes.com/sites/bernardmarr/2017/07/10/6-practical-examples-of-how-quantum-computing-will-change-our-world/#6e9f8aab80c1

4. https://www.accenture.com/t00010101T000000__w__/br-pt/_acnmedia/PDF-45/Accenture-Innovating-Quantum-Computing-Novo.pdf

5. https://towardsdatascience.com/quantum-machine-learning-90628c5804fe

6. https://edgylabs.com/11-facts-help-explain-quantum-computers

7. http://www.wired.co.uk/article/quantum-computing-explained

8. https://www.bcg.com/publications/2018/coming-quantum-leap-computing.aspx

9. https://www.accenture.com/t00010101T000000__w__/br-pt/_acnmedia/PDF-45/Accenture-Innovating-Quantum-Computing-Novo.pdf

10. http://www.nea.com/blog/quantum-computing-time-for-venture-capitalists-to-put-chips-on-the-table

3 Boyutlu (3D) Yazıcılar

Günümüzde, katmanlı üretim teknolojileri (additive manufacturing technologies) kullanılarak geleneksel talaşlı üretim yöntemlerine kıyasla çok daha az malzeme girdisi ile daha esnek tasarımlara sahip ürünler üretilebilmektedir. Bu teknolojiyi esas almakta olan 3 boyutlu yazıcılar ilk olarak 80’li yıllarda kullanılmaya başlanmış ve günümüze kadar hızlı bir şekilde geliştirilmiştir. Bu gelişmeler sonucunda katmanlı üretim teknolojisinin sanayi sektöründeki alanı da büyümeye devam etmektedir.

Katmanlı İmalat Yöntemleri
3 boyutlu yazıcılar, sahip oldukları tekniğe ve kullanılan malzemelere bağlı olarak farklılık göstermekte olup bu teknolojilerden en sık kullanılanları şunlardır:
1. FDM (Ergitilmiş Katman Modelleme-Fused Deposition Modelling): Dünya genelinde okullardan hastanelere çok geniş bir kullanım alanına sahip 3 boyutlu yazıcı çeşididir. FDM’ler, filament adı verilen termoplastik polimerlerden yapılan malzemelerle çalışır. En çok tercih edilen filamentler ABS ve PLA’dır, ayrıca Naylon, PETG, PVA, FLEX gibi filamentler de kullanılmaktadır.[1] FDM’ler, filamenti ekstrüder adı verilen itici ve ısıtıcı ekipmandan geçirerek ergimiş hale getirir ve baskı tablası üzerinde katman katman işleyerek katı modeli oluşturur. FDM yazıcılarda baskı sırasından sarkma oluşmaması için destekler kullanılır. Bu destekler baskı bittikten sonra sökülmektedir. Bu işlem sonucunda ürün üzerinde fiziksel bozulmalar yaşanabilmektedir. 
Ülkemizde de tüm dünyada olduğu gibi 2009 yılı itibarıyla patent süresinin dolmasıyla birlikte FDM tipi yazıcıların kullanımı yaygınlaşmıştır. FDM makineleri, genellikle hızlı prototipleme ve az sayıda seri imalat durumlarında tercih edilmektedir [2]. Ayrıca bu makineler eğitim, hobi gibi alanlarda da yaygın olarak kullanılmaktadır.


Şekil 1. Yerli Üreticiye Ait FDM Tipi Bir 3D Yazıcı

2. SLA (Lazer Stereolitografi-Stereolitgography): Katmanlı üretim metotları içerisinde sıklıkla kullanılan bir yöntemdir. SLA makinelerinde FDM’de olduğu gibi, ağırlıkla plastik ve polimer malzemeler kullanılmaktadır. SLA tipi 3 boyutlu yazıcılarda, lazer ışını kullanılarak sıvı fotopolimer malzemelerde lokal katılaştırma gerçekleştirilir. Bu işlem tüm katmanlar için uygulanır ve belirlenmiş tasarımda katı model oluşturulur. Bu yöntemle alınan baskılarda yüzey kalitesi yüksektir; ancak, fotopolimer çok kararlı bir malzeme değildir ve mekanik özelikleri değişkendir. Hızlı prototip ve bazı kalıp uygulamalarında tercih edilebilir. Ticari olanları genellikle birkaç bin Dolara mal olmaktadır.


Şekil 2. SLA makinelerinin tezgâh yapısı

3. SLS (Lazer ile Sinterleme-Selective Laser Sintering): Güçlü bir katı model oluşturmak için kaynak olarak lazer ve toz malzeme kullanır. SLS makineleri, lazer kullanarak toz malzemenin kaynama noktasının hemen altında, toz içindeki partikülleri bir katı formda bir araya getirir. Baskı platformu aşağı hareket eder ve bir silindirin yardımı ile üst katman homojen bir şekilde tozla kaplanır. Katılaşmış tozun ardışık katmanlarının kademeli olarak bu şekilde eklenmesiyle istenen model üretilir. Model üretimi tamamlandıktan sonra fazla toz malzeme süpürülür (kumlama veya fırçalama işlemi) ve yeniden kullanılmak üzere saklanır. SLS makineleri ile sadece plastik değil seramik, cam ve hatta alüminyum, paslanmaz çelik, titanyum, nikel alaşımı, kobalt krom gibi çeşitli metal malzemelerle de baskı alınabilir. Ekonomik olanlarının fiyatları 12.000 Dolar ila 33.000 Dolar arasında değişmektedir.


Şekil 3. SLS Makinelerinin Tezgâh Yapısı

SLS’nin diğer bir varyasyonu ise kaplama işlemi (cladding) olarak adlandırılır.
4. SLM (Lazer ile Ergitme-Selective Laser Melting): Katmanlı üretim teknolojisinin, çeşitli yapısal karmaşık şekillendirilmiş metal bileşenleri üretmek ve farklı alanlardaki uygulamaları için yüksek talep gereksinimlerini karşılamak üzere geliştirilmiştir [3]. Sinterleme metoduna benzemektedir. SLM’nin, SLS makinelerinden tek farkı, toz parçacıkları lazer ile tam ergiterek katmanlar arasında birleştirmesidir. Malzeme daha yüksek sıcaklıklara maruz bırakıldığı için yanıcı ve tutucu gazların oluşumunu engellemek adına makinenin içinden dışarıya havalandırma hattı bulunur ya da içine Ti, Mg gibi koruma malzemeleri eklenir [4]. Bunun dışında üretim yöntemleri benzer olduğundan tezgâh yapılarının da benzer olduğu söylenebilir. Havacılık, otomotiv ve biyomedikal gibi sektörlerde kullanılmaktadır.


Şekil 4. SLM Makinelerinin Tezgâh Yapısı

5. LMD (Lazer Metal Biriktirme-Laser Metal Deposition): Bu sistemde, toz halindeki ham metal, istenilen noktalara lazer veya elektron ışını gibi enerji kaynakları ile ısıtılıp eritilerek püskürtülür. Lazer Kaplama (Laser Cladding), Yönlendirilmiş Enerji Birikimi (Directed Energy Deposition), Lazer Metal Biriktirme (Laser Metal Deposition) olarak da adlandırılmaktadır. Bu yöntem, kullanılan tezgâhın kabiliyetine göre 100 μm kadar ince yapıların oluşturulmasına yönelik oldukça hassas kontrol edilen bir yöntemdir. SLM sistemlerin aksine bu yöntemde metal biriktirilen yüzey/yapı çok fazla ısıtılmaz. Bu teknolojiyle var olan bir yapıya zarar vermeden kaplama ve tamiratlar yapılabilmektedir.


Şekil 5. LMD Teknolojisi


Sanayide yaygın olarak kullanılan 3 boyutlu yazıcılar; polimer ve metal ürünlerin üretiminde kullanılan yazıcılardır. Bu tip makineler ülkemizde %79 oranında prototiplemede kullanılmaktadır. SLS ve SLM makineleri, metal ürün imalatında kullanılan en yaygın 3 boyutlu yazıcı çeşitleridir. Günümüzde yapılan katmanlı üretim teknolojisi ile ilgili Ar-Ge çalışmaları genellikle metal parçaların üretiminde yoğunlaşmaktadır.


Ülkemizde sac işleme makineleri konusunda önemli bir konuma sahip olan ERMAKSAN firması, 3 boyutlu yazıcılarla ilgili olarak Bakanlığımız teşvikleriyle desteklenen Ar-Ge çalışmalarının neticesinde SLM teknolojisine sahip yazıcı üretmiş ve bu ürünün ticarileşmesini sağlamıştır [5]. ERMAKSAN tarafından yakın zamanda toz beslemeli lazer eritmeli sistemler (LMD tipinde) üzerine de Ar-Ge faaliyetlerine başlanmıştır. Bu teknolojinin önümüzdeki dönemde havacılık, petrokimya ve savunma sanayilerinde kullanılan kritik parçaların yeniden temin edilmesi yerine bunların revizyonlarının yapılmasını sağlayacak olması nedeniyle ülke ekonomisine önemli düzeyde katkıda bulunulması beklenmektedir.

Ülkemizdeki mevcut 3 boyutlu yazıcı pazarı ağırlık olarak yurtdışı menşeili ürünlerden oluşmakta olup önümüzdeki günlerde yerli markaların pazardan makul bir düzeyde pay alacakları ve bu payı önümüzdeki yıllarda artıracakları tahmin edilmektedir.

2018 yılında, 3 boyutlu yazıcıların ekonomik ve stratejik konumu göz önünde bulundurularak “kauçuk veya plastiğin işlenmesine veya kauçuk veya plastikten eşyanın imaline yönelik 3 boyutlu yazıcılar” için yeni bir Gümrük Tarifesi İstatistik Pozisyonu (GTİP) açılmıştır. Ancak metal, seramik vb. malzemeleri kullanan yazıcıların dış ticareti ise “diğer makinalar” için kullanılan bir kod üzerinden sağlanmakta olup Türkiye’deki pazar büyüklüğünün 22,5 milyon Dolar olduğu belirtilmektedir.

Tablo 1. 3 Boyutlu Yazıcılar İçin Kullanılan G.T.İ.P. Kodları

G.T.İ.P. KoduAçıklama
8477.80.99.00.11Üç boyutlu (3D) yazıcılar 
8479.89.97.90.00Diğer makinalar

Dünya genelinde 2017’deki metal ürün imalatında kullanılan 3 boyutlu yazıcı satışları 950 adetten 1.800 adetlere yükselmiştir. Sektör yıllık ortalama %30-40 arasında büyüme göstermektedir. Toplam 3 boyutlu yazıcı pazarının 2018’de 8 milyar Dolar, 2020’de ise 12-20 milyar Dolar olması öngörülmektedir.

Kaynakça:
[1] https://www.additively.com/en/learn-about/fused-deposition-modeling#read-chain
[2] STM, Sektör Değerlendirme Raporu: Katmalı İmalat Teknolojileri ve Havacılık Uygulamaları, 2016.
[3] Manfredi D. ve arkadaşları, On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Torino, 2017.
[4] https://www.additively.com/en/learn-about/laser-melting 
[5] Ermaksan, http://www.ermaksan.com.tr/tr-TR/
[6] 3D HUBS, https://www.3dhubs.com

Endüstriyel Robot Teknolojisi

Son 10 yılda robot teknolojilerinde yaşanan gelişmeler sanayi sektörlerini üretim kabiliyetleri açısından olağanüstü bir biçimde değiştirmiştir. Robotlar eskiden ağırlıklı olarak üretim verimliliğini, kalitesini artırmak ve üreticilerin operasyonel maliyetlerini düşürmek adına karmaşık, tekrarlayıcı veya tehlikeli görevleri yerine getirmek için geleneksel olarak kullanılmaktayken endüstriyel robot pazarı artık nesnelerin interneti (IOT) tarafından yönlendirilen yeni bir dönüşüm sürecini yaşamaktadır.

Elbette, artan iş gücü maliyeti ve gelişmekte olan ülkeler arasındaki zorlayıcı rekabet de birçok şirketi verimliliği artırmak adına endüstriyel robot kullanımına yönlendirmektedir.

Endüstriyel robotlar sanayinin her alanında ve üretimin her aşamasında kullanılır hale gelmiştir. Otomotiv sektöründe montaj, boya, kaynak, kalite kontrol aşamalarında; elektronik sanayinde montaj, kalite kontrol, boya, nakliye, paketleme; gıda sanayinde üretim, paketleme, nakliye, etiketleme gibi çok çeşitli işlerde endüstriyel robotlar kullanılmaktadır. Robotların entegrasyonunda ve programlanmalarındaki bazı zorluklar ise müşteriye özel uygulamalarda yaygın olarak kullanımlarını sınırlamaktadır.
 

Nanomalzemeler

Nanoteknoloji günümüzde çok sık duyulan bir terimdir ve giderek tüm sanayi kollarında ve sağlık alanında kullanımı artmakta ve insan hayatındaki sorunlara çözümler sunmaktadır. Nano kelimesi anlamını yunanca olan ve cüce anlamına gelen ‘nanos’ sözcüğünden almaktadır. Nanoparçacıklar büyüklüğü 1 ve 100 nanometre arasında değişen materyallerdir. Bir nanometre metrenin milyarda biridir (Şekil 1). Nanoteknoloji kısaca boyutları milyarda bir olan malzemelerin fiziksel, kimyasal ve biyolojik yapılarını araştıran ve kullanım alanlarıyla ilgilenen disiplinler arası bir alandır [1]. Nanomalzemeler nanoteknolojinin temel taşlarını oluşturlar ve bu boyutta eşsiz optik, manyetik ve elektriksel özellikler taşırlar. Nanoteknolojiyi bu kadar ilginç kılan unsur, malzemelerin bu boyutta makro dünyadan farklı davranmalarıdır. Makro boyuttan nano boyuta geçerken güç/ ağırlık oranı, iletkenlik, optik ve manyetik özellikleri kayda değer biçimde değişmektedir [4].

Şekil 1. Nano ve Mikro Boyutta Doğada Bulunan Yapılar [5]

Nanoteknolojinin Tarihçesi
Nanomalzemeler ilk olarak 1959’da Richard Feynman tarafından ortaya atılmıştır. Feynman, Kaliforniya Teknoloji Üniversitesi’nde verdiği bir derste ilk defa tek tek atomları ayırmaktan ve kontrol etmekten bahsetmiştir. Bu nedenle Feynman nanoteknolojinin babası olarak isimlendirilmiştir. Feynman’ın düşüncesinden yola çıkarak ilerleyen Norio Taniguchi 1974’te ilk olarak ‘nanoteknoloji’ tanımını yapmıştır. Taniguchi nanoteknolojiyi materyalleri tek atom olarak ayırma, birleştirme veya deforme etme olarak tanımlamıştır. 1981de Eric Drexler yazdığı ‘Molecular Engineering: An approach to the development of general capabilities for molecular manipulation’ isimli makale ile moleküler nanoteknolojinin öncüsü olmuştur. Bu çalışmalar 1981’de Gerd Binnig ve Heinrich Rohrer tarafından bulunan Taramalı Elektron Mikroskobu’nun (TEM) keşfi ile hız kazanmıştır. Bundan beş yıl sonra Atomik Kuvvet Mikroskobunun (AFM) bulunmasıyla tek atom görüntüleri alınmıştır [2].

Boyutlarına Göre Nanomalzemeler
Nanomalzemeler boyutlarına göre dörde ayrılırlar:
• Sıfır Boyutlu Nanomalzemeler (0D),
• Tek Boyutlu Nanomalzemeler (1D),
• İki Boyutlu Nanomalzemeler (2D),
• Üç Boyutlu Nanomalzemeler (3D).

1) Sıfır Boyutlu Nanomalzemeler (0D)
0D nanomalzemeler nanotoz veya nanodispersiyon şeklinde, birbirinden izole halde bulunan malzemelerdir. Günümüzde bu malzemeler çok farklı şekillerde bulunmaktadır ve çeşitli araştırma grupları tarafından sentezlenmektedir. 0D malzemelerden bazıları; homojen parçacık yüzeyleri halinde bulunan kuantum noktalar (quantum dots), nanoküreler (nanospheres), fullerenler, çekirdek (core shell) nanoparçacıkları ve içi boş nanokürelerdir. (hollow nanospheres) Bunların örnekleri Şekil 2’de görülmektedir. 

Şekil 2. Sırayla Çekirdek Nanoparçacığı, İçi Boş Nanoküre, Nanoküre ve Nanotüp Tem Görüntüleri

1) Tek Boyutlu Nanomalzemeler (1D)
1D nanomalzemelere örnekler; nanoçubuklar ve nanotüplerdir. Nanotüpler Iijima tarafından bulunmuştur ve günümüzde giderek önem kazanmaktadır. 1D nanomalzemeler nanoelektronik, nanosistem, nanoaygıtlarda ve nanokompozitlerde, alternatif enerji kaynaklarında ve ulusal güvenlik alanlarında oldukça yaygın olarak kullanılmaktadır. 
2) İki Boyutlu Nanomalzemeler (2D)
2D malzemeler nanometrik boyuttaki film ve kaplamalardır. Günümüzde 2D malzemeler giderek önem kazanmakta ve kullanım alanları artmaktadır. 2D malzemelerin keşfi grafen ile başlamıştır ve sonrasında boron nitrür ve molibden disülfit gibi birçok malzeme bulunmuştur.
3) Üç Boyutlu Nanomalzemeler (3D)
3D malzemeler toz yapılı, lifli, çok katmanlı ve polikristal malzemelerdir. Örnekleri; elmas ve grafittir.

Nanomalzemelerin en çok kullanılan çeşitleri grafen ve karbon nanotüplerdir (CNT). Grafen ilk keşfedilen 2D nanomalzemedir. Grafen karbon atomlarının bal peteği yapısında dizildiği çok katmanlı grafit katmanlarının ayrılmış halidir. Grafitin on altıncı yüzyıldan beri bilinen bir malzeme olmasına rağmen grafen 2004’te Andre Geim’ın araştırmaları sonucu bulunmuştur. Grafenin bu kadar çok tercih edilmesinin nedenleri kendine özgü eşsiz özellikleridir. Grafen oldukça hafif, çelikten yüz kat daha sağlam bir malzemedir, elektriksel iletkenliği çok yüksektir, tek katmanlı olduğunda %97 oranında saydamdır ve %20 oranında esnektir. Grafenin bu kadar sağlam olmasının nedeni karbon karbon çift bağlarından oluşan moleküler yapısıdır ve bu bağ doğadaki en sağlam bağlardan biridir. Bu sayede kurşungeçirmez malzemelerde grafen kullanımına sıkça rastlanmaktadır. Grafen oksit ve farklı atomlar katkılanmış grafen de sıkça savunma sanayisinde ve geri dönüştürülebilir enerji kaynaklarında kullanılmaktadır [3].

Karbon nanotüpler (CNT) grafenin katlanmış ve bir tüp halini almış halidir. Tek duvarlı ve çok duvarlı karbon nanotüpler olarak ayrılmaktadır. CNT’lerin kendilerine özgü kristal yapıları sayesinde birçok farklı özellikleri ve kullanım alanları vardır. CNT’ler çok ince çaplarına karşın oldukça uzun olabilirler. CNT’ler hafif ve esnek, elektriksel iletkenliği yüksek ve mekanik dayanıklılığı oldukça fazla olan malzemelerdir. Duvar yapısındaki karbonların dizilimine göre dayanıklılığında ve iletkenliğinde farklılıklar gözlemlenmektedir. CNT’ler hem sağlık sektöründe hem de alternatif enerji kaynaklarında sıkça kullanılmaktadır. İmplant malzemelerinde, biyosensörlerde, enerji kaynaklarında katalizör olarak ve yapay kas yapımında sağlam ve esnek yapıları CNT’leri en uygun adaylardan biri yapmaktadır. 

 Şekil 3. Grafen, Tek Katmanlı Karbon Nanotüp ve Çok Katmanlı Karbon Nanotüp Molekül Şekilleri

4) Kullanım Alanları
Dünya genelinde 1997 yılında nanoteknolojiye yapılan yatırım 430 milyon Dolar iken 2004 yılında 90 milyar Dolara yükselmiş ve 2020 yılı itibarıyla nanoteknolojinin yıllık 3 trilyon Dolarlık yatırım ile küresel bir endüstri olması öngörülmektedir [6].

Trend teknolojiler arasında hızla etkisini artırmakta olan nanomalzemelerin kulanım alanları (Şekil 4) eksponansiyel olarak artış göstermektedir. Birim ağιrlιk başιna şu andakinden 50 kat daha hafif ve çok daha dayanιklı malzemeler üretilebilecek ve bunlarιn sonucu olarak bu malzemeleri nano ölçekte kuantum bilgi işleme yapan süperbilgisayarlar, çok gizli istihbari ve savunma görevlerinde yer alacak nanorobotlar, beyinsel kapasiteyi artıracak nanohafızalar, kirlilik önleyici nanoparçacιklar olarak tekstil, uzay ve havacιlιk, bilişim, kompozit, elektronik, sağlık gibi çok çeşitli alanlarda kullanmaya başlayacağız [8].

Şekil 4. Nanomalzeme Kullanım Alanları Diyagramı [7]

Sonuç
Nanoteknoloji ve nanomalzemeler (özellikle grafen vb.) Türkiye’nin Sanayide Yüksek Teknoloji Geçiş Programında mutlaka detaylı şekilde ele alınması ve yapılanmaya gidilmesi gereken bir alandır. Gelecekte mesleklerin kayda değer bir bölümü bu alanda oluşacak ve üretim tesisleri bu teknolojiyi ve malzemeleri kullanan endüstrilere dönüşecektir. Bu malzemelerin çevresel ve sağlık faktörleri de ayrıntılı şekilde araştırılmalıdır. Bu malzemelerin ithalinde yaşanabilecek negatif dışsallık sağlayacak unsurları giderecek çalışmalar hayati önem taşıyacaktır.

Kaynaklar: 
[1] A. Alagarasi (2011), Introduction to Nanomaterials, Chapter 1, 76
[2] J. E. Hulla, S. C. Sahu, A. W. Hayes (2011), Nanotechnology History and Future, Human and Experimental Toxicology, 34, 12, 1318-1321
[3] R. M. Balleste, C. G. Novarro, J. G. Herrero, F. Zamora, 2D materials: to graphene and beyond, Nanoscale, 2011, 3, 20-30
[4] Rao, C, N, R, Müller, A, Cheetham, A,K, Nanomaterials Chemistry, 18-31, 2007.

[6] Khan , A,S, Nanotechnology: Ethical and Social Implications, CRC Press, 2-5, 2012.

[8] Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, Ulusal Bilim ve Teknoloji Politikaları 2003-2013 Strateji Belgesi, http://www.tubitak.gov.tr/tubitak_content_files/vizyon2023/Vizyon2023_Strateji_Belgesi.pdf ( Erişim Tarihi: 05/06/2018).

Nano Teknoloji ve Tekstil Endüstrisi

Türk ekonomisinin lokomotifi tekstil endüstrisidir.
Son yılların gözde teknolojisi ve çığır açan uygulama alanları ile nano teknolojiyi, tekstil endüstrisinde kullanıp, ülkemizin ekonomisine ve teknolojisine katkı da bulunabilir miyiz?

Acaba, tekstil üreünlerini atomik veya moleküler yapıda inceleyerek, çok daha etkili tekstil ürünleri tasarlayabilir miyiz? 
Bu sorunun cevabı ELBETTE olacaktır.Örneğin, ter tutmayan iç çamaşırları ya da meyve suyu dökülen tişörtlerimizin leke tutmaması, nano teknolojinin tekstil ile birleştirilmesindeki en güzel örneklerindendir.

Tekstil endüstrisi, nano teknoloji kullanarak, çok daha modern ve teknolojik bir döneme adım atmaktadır.Yukarıda verdiğimiz bir kaç tekstil ürünü dışında, nano teknoloji kullanarak bilim kurgu filmlerinde gördüğümüz ürünler de elde edebiliriz.
Örnek vermek gerekirse, kalp atışlarımızı, vücut ısımızı ve kan şeklerimizi düzenli olarak kontrol eden bir tişört üretebilirsek, sağlık ile ilgili kötü bir durumda, tişörtün, kablosuz bir bağlantı ile doktorumuza haberdar etmesi sağlanabilir.Böylece, herhangi bir kritik anda, acil olarak müdahale edilebilir ve birçok hayat kurtarılabilir.Etkileyici değil mi?

Hayal etmek güzeldir.Zaten pek çok teknolojik ürün, hayal sonucu üretilmiyor mu?Nano teknoloji, bu tür ürünlerin tasarlanabilmesi için bize gerekli olan materyalleri sağlamakta.Şu an uçuk gelebilecek bu ürünler, belki 10 15 yıl sonra herkes tarafından kullanılabilecek 🙂

Nano teknoloji, devrimsel bir teknoloji ve henüz anlaşılma seviyesindedir.Nano teknolojinin, tam olarak bilim dallarına girmesi 2025 olarak öngörülüyor ve bu tarihten itibaren, teknolojinin her noktası atomik, moleküler mühendislik altında ele alınacaktır.Tekstil sektörü de, nanometre boyutlardaki ürünleri ile hayatımıza farklı bir tarz getirecektir.
Örnek olarak çorapların üretilmesinde kullanılan ipliğin, gümüş nano parçacıklar ile birleştirilmesi ile, çorağ içerisinde bakteri ve birçok hastalığa yol açan bakterilerin oluşması engellenebilir veya mikropların barınması tamamen durdurulabilir.Buda çorağların kötü kokusunu tamamen kaldırır.Müthiş değil mi?
Ya da, su moleküllerini iten atomik parçacıklar kullanan iplikler ile üretilen giysiler ile ter tutmayan ya da üzerine dökülen sıvıları barındırmasa, hayat daha kolay olmaz mı?
Suyun, 2025 li yıllarda, petrolden değerli olacağı varsayılıyor ise, bu tür ürünler, sudan elektrikten tasarruf etmemizi sağlamaz mı?Hatta çamaşır makinelerini ortadan kaldırmaz mı?

Esnek ve yıkanabilen nano sensörler ve çiplerin, giysi içerisine monte edilmesi ile, giysilerimiz adeta duyacak ve görecektir.Yapay zeka ve diğer bilimsel gelişimler paralelinde, elbiselerimiz çevresel tepkilere cevap verebilecek duruma gelecektir.
Bu örneğin asıl amacı, nano teknolojik ürünlerin, giydiğimiz elbiselere monte edilmesi ile, elbiselere birçok işlev kazandırması ama giyen kişiyi de hiçbir şekilde rahatsız etmemesi.Normal bir tişört ile, mikro çipler monte edilmiş bir tişörtün, kişi üzerinde herhangi bir farka yol açmaması.

SAVUNMA SANAYİNDE NANO TEKNOLOJİ

Son yıllarda yapılan nano teknolojik çalışmalar doğrultusunda, akıllı elbiselerin üretiminde, ümit verici gelişmeler meydana gelmiştir.Kimyasal ve biyolojik etki alanlarını ve insanlara zarar verebilecek diğer maddeler ile dolu bölgeler, elbiseler tarafından fark edilebiliyor.

Nano teknolojinin tekstil ile birleştirilmesi, savunma sanayinde de çığır açan ürünlerin geliştirilmesine neden olmuştur.Yapılan çalışmalar doğrultusunda, savaş alanında yaralanan askerlerin, her türlü bilgilerini ana kumanda merkezine gönderen ve askerin bulunduğu noktaya anında tıbbi ekibi yönlendiren, akıllı elbiseler üretilerek, savunma sanayinde resmen çığır açılmıştır.
Üniformaların, gerektiği noktalarda çok sert bir zırha dönüşebilmesi, savaş alanlarındaki şarapnel parçaların, askere zarar vermesi önlenebiliyor.

SONUÇ

Görüldüğü gibi nano teknolojitekstil alanında kullanılarak, inanılması güç ama bir o kadar da etkileyici ürünleri hayatımza kazandırabiliyor.
Şu an için ütopik görünen pek çok tekstil ürünü, nano teknolojinin daha da geliştirilmesi ile hayata geçirilebilecek, insanların kullanımına sunulabilecek.

Belki birçok hayat kurtarılacak, muhtemelen hayatımız çok daha kolay bir hale gelecek.

Ayrıca, suyun ileride, petrolden daha önemli bir hale geleceği düşünülürse, bugün sürekli yıkanan tekstil ürünleri, kir tutmayan ipliklerle üretilerek, bir daha yıkanması ya da temizlenmesi gerekmeyebilir.Böylece, sırf giysilerin yıkanmasına harcanan tonlarca su, susuzluktan belki de hayatını kaybedecek olan insanlara götürülerek, pek çok hayat kurtarılabilir.

Anlaşılacağı üzere, nano teknoloji gelecek için kilit öneme sahip bir teknolojidir.Nano teknolojiyi anlamalı ve bu teknolojiyi kullanarak ürünler elde edecek duruma ülkece gelmeliyiz.Geleceğin bu çok önemli teknolojisi için, yatırımlarımızı şimdiden yapmalı, gerekli altyapıyı kurmalıyız.

Tekstil konusunda bile, ortaya çıkan ürünler, sizi biraz heyecanlandırdı ise, nano teknolojinin diğer bilimsel dallarda da kullanılması sonucu, neler tasarlanabileceğini, doğaya, insanlığa ne kadar faydalı olabileceğini bir kez de siz düşünün…
Eminim, sizin fikirleriniz de en az bizim örneklerimiz kadar heyecan verici olacaktır.

Sevgilerle..

Tıp ve Nano Teknoloji

Nano teknoloji, daha öncede bahsedildiği gibi maddeleri atomik düzeyde inceleyen bir mühendislik alanıdır. Nanometre, metrenin milyarda biridir ve maddeler üzerinde çok daha esnek işlemler yapılmasına izin verir.

Nano teknoloji, birçok bilim dalında kullanılabilmektedir.Her bilim, kendi dalında küçük moleküler yapılar ile muhakkak uğraşır.Bu da nano teknolojinin, doğal olarak tüm bilimsel alanlarda kullanım alanı olduğunu gösterir.

Elektron mikroskobunun bulunması ile birlikte, artık malzeme üretirken malzemeyi oluşturan elementlerin atomları üzerinde çalışmalar yapılarak (atomların diziliş biçimler değiştirilerek) onlara çeşitli şekiller verilmeye başlanmıştır. Günümüzde nano teknoloji yardımıyla maddeyi oluşturan atomların dizilişinde şekillendirmeler yapılabilmektedir. Nano teknoloji; maddenin nanometre ölçeğinde yani moleküler düzeyde denetlenmesi yoluyla gerçekleştirilen işleme, ölçüm, modelleme ve düzenleme gibi çalışmalarla yeni malzeme, cihaz ve sistemlerin tasarlanması ve üretilmesini konu alan bir teknoloji dalıdır.

Maddeler, nanometre ile ölçülen küçük boyutlarda, normalden daha farklı davranabilir.Normalde ışığı ve elektriği iletmeyen maddeler, nano boyutlarda incelendiğinde bunun tam tersi olduğu gözlenebilmektedir.Normalde, sert olmayan bir madde, nano boyutlarda incelendiğinde elmasdan daha sert davranışlarda bulunabilir.Bu tür gözlemler bize şunu gösteriyor ki, maddeler nano boyutlarda incelendiğinde, doğal davranışlardından çok farklı olabiliyorlar.

Nano teknoloji; sadece üç adet atomdan oluşan küçük bir su molekülünden, hemoglobin gibi oksijen taşıyan bir protein molekülüne ya da DNA zincirine kadar çok geniş bir alanı kapsayan yeni bir teknolojidir.

Tıp alanında nano teknoloji kullanılarak, varolan hastalıklara ya da canlı anatomisi hakkında çok daha derin analizler yapmak mümkündür.Şuan ki hastalıkların birçoğunun hücresel ya da daha küçük moleküller bazda incelenmesi, tıpda bir devrim niteliğindedir.

Nano teknoloji ürünleri, beyin damarlarının içerisine, dişin içine, vb. insan vücudu içerisinde her yere yerleştirilebilir. Nano teknoloji ürünü chipler ve özel donanımlar ile canlı organizmalar uzaktan kontrol edilebilir. İnsan saçı içerisine sığabilen özel kablolarla özel bir iletişim sistemi de kurulabilir.

Nano teknoloji
 sayesinde, çok küçük boyutlarda üretilebilen nano robotlar yapılabilecektir. Günümüzde, nano boyutta fonksiyonel olabilen bu robotları insan kanına verip insan vücudu içerisinde hasarlı organı onarabilecek nano robot teknolojileri ile ilgili proje çalışmaları yapılmaktadır. Beynin kılcal damarları tıkandığında, nano tüpler ile bu tıkanmalar giderilebilecektir. İnsan beyni, içerisinde kimyasallar ve elektronlar bulunan bir yapıda olup beyin hücreleri ararsındaki iletişim nano seviyededir. Beyin damarları içerisinde kan ile hareket eden nano tüpler vasıtasıyla hatasız teşhis ve tedavi yapılabilecektir. Bir tür sinirsel iletişim eksikliğinden kaynaklanan ve genel adı felç olan hastalığa, nano teknolojiyle üretilen yapay kılcal damarlar ile çare bulunacaktır.

Bir süper bilgisayar tarafından kontrol edilen ve vücudumuzun yapay bağışıklık sistemini oluşturacak nano robot ordularının üretilmesiyle nüfuz edilemez bir bağışıklık sistemimiz olacak ve AIDS virüsleri bile size etki edemeyecek. Ana arterlerimizde ve kılcal damarlarımızda gezinen mini robotlar düşünün… Vücudumuza bir defa enjekte edildikten sonra çalışmaya programlanan nano robot sürüleri kan dolaşımı ile istenilen bölgeler gidip hep beraber hasar görmüş bir organı veya dokuyu tamir edebilecek. Tıkanan damarları açabilecek veya hastalıklı hücreleri tahrip edebilecekler. Artık kalp krizi riskinden, enfeksiyona bağlı hastalıklara kadar birçok rahatsızlıktan kurtulacaksınız. Hatta bu mini robotlar vücuda ek bir bağışıklık sistemi bile kazandırabilirler. Hedef hücrelerin özellikleri programlandığında, örneğin vücuda giren herhangi bir virüse saldırabilir ve bünye hastalanmadan virüs istilasını durdurabilirler. Aynı zamanda vücuttaki her bulguyu rapor edip doktorluk da yapabilirler. 

Nano teknoloji, ilaç sektöründe de kullanılmaktadır. Vücuda alınan ilaçlar, normalde vücudun her yerine dağılmakta ve gerçek hedefe gitme olasılığı azalmaktadır. Halbuki nano partiküller ile ilacı doğrudan doğruya gitmesini istediğimiz gerçek hedefe gönderebiliriz. Bunu, hedefi vuran nano kurşuna benzetebiliriz. Böylece ilaç doğrudan doğruya hasta bölgeye veya hasta dokuya gönderilebilecektir. Nano tabancalar ile doğrudan hücreye müdahale edilebilecektir. Mevcut yöntemlerle ilaç alımında, vücudun küçük bir bölgesini tedavi etmek için vücudun başka bir yerini zehirlemek gibi bir risk bulunmaktadır ve bu verimsiz bir yöntemdir. Klasik yöntemle ilaç kullanımında, vücudun kritik iç organları, beyin, karaciğer, böbrek vb. zara görebilmektedir. Halbuki nano teknoloji ile yapılan tedavide, ilaç nnao kapsüllere yükleniyor ve bu nano kapsüller şırınga ile sadece hasta bölgeye veriliyor. Sonra da bo nano kapsüller patlatılıyor ve sadece gerekli yerlere ilaç zerkedildikten sonra da bu zararsız nano kapsüller vücuttan dışarı atılıyor. Gelecekte nano biyolojik ürünler gündeme gelecek, suni organ yapımında nano parçalar kullanılacak, anında teşhis koyabilen sağlık tarama araçları yapılabilecektir.

Pek yakın gelecekte, medikal nanoteknoloji alanında bir devrim yaşanacak diyebiliriz… Örneğin sanal olarak hastalıkların önüne geçilebilecek, moleküler seviyede hücreleriniz tamir edilecek ve yaşlanma yavaşlatılacak. 50 yaşındayken kendinizi 25 yaşında hissedeceksiniz.

Modern Nano fabrikasyon Üretim Teknolojisi

Nano teknoloji, günümüzde emekleme çağında olmasına rağmen, oldukça geniş bir alanda kullanılmaya başlandı.
Bunun en güzel örneklerini, bilgisayar işlemcilerini üreten teknoloji devlerinin 45 nm sınırlarını şimdiden aşmaları gösterir.AMD ve INTEL firmaları, ürettiği hesaplama işlemcilerinde, milyonlarca hatta milyarlarca transistör, ufacık chiplerin içerisine gömülebiliyor.

Buraya kadar herşey normal gibi görünsede, klasik üretim teknolojileri, nano teknolojide çok daha küçük boyutlara inmemizi şuan için imkansız kılıyor.

Geleneksel silikon teknolojisinde kullanılan optik litografi yöntemleri bu boyutları içeren aygıtları yapmaktayetersiz kalacaktır. Bu durumda nanoyapıları üretmek için yeni fabrikasyon teknolojilerinin geliştirilmesi gerekmektedir.Optik litografi temelli silikon teknolojisinin 10-15 yıl içersinde yetersiz kalması ile nanoyapılar içeren nanoelektronik temelli tümleşik entegre devrelerin yapımında elektron demet nanolitografi sistemleri kullanılacaktır.

Elektron demet litografisi yöntemi günümüzde nanoyapıların üretiminde en yaygın olarakkullanılan teknolojidir ve ilerde hızla gelişmesi beklenmektedir. Elektron dalga boyunun 0.1-1nmmertebesinde olması sayesinde elektron demetlerini 1nm boyutlarında odaklamak teorik olarakmümkündür. Bu şekilde odaklanmış elektron demeti ile uygun fotorezist malzemeleri kullanaraknanoyapılar yapmak mümkün olmaktadır. Elektron demet nanolitografi sistemleri nanoelektronikdevrelerin üretimi yanında nanofotonik, nanomanyetizma ve diğer şekillendirilmiş nanoyapılar gerektirentüm nanoteknolojilerde önemli bir temel teknoloji olacaktır. Bu nedenle bu tür temel bir teknolojininülkemizde yer alması çok önem taşımaktadır.

Elektron demet nanolitografi teknolojisi, aynı anda tek bir noktayı yazması nedeni ile tümleşik devreyapma konusunda hızı yetersiz kalmaktadır. Bu duruma çare olarak paralel olarak çalışan bir çok elektrondemetinin kullanılması öngörülmektedir. Elektron demet litografisinin yavaşlığına çözüm olarak nanobaskıteknolojisi önemli bir hız avantajına sahip olacaktır. Bu teknolojide master denilen ve elektrondemet litografisi ve reaktif aşındırma yöntemleri ile oluşturulan bir mekanik maske kullanılacaktır. Bumaster daha sonra polimer bir yüzeye bastırılmak yöntemi ile master maskede yazılı bulunan tümayrıntılar kopya edilecektir. Bu şekilde master maske üzerinde bulunan bütün nanoyapılar hızlı bir şekildekopyalanacak ve tümleşik devre yapımı çok hızlanmış olacaktır.

Bu nanofabrikasyon teknolojileri ile nanoyapılara sahip robotlar veya nanorobotlar yapmak mümkündür.Nanorobotlar belirli bir işlemi veya işlemleri çok hassas olarak tekrar edebilen nanomakinelerdir. Dahabüyük boyutlarda olan robotlar gibi nanorobotlar da ikiye ayrılabilir: bağımsız ve böcek nanorobotlar.Bağımsız nanorobotların üzerinde kendi nanobilgisayarları olduğu için kendi başına hareket etme özelliğivardır. Böcek nanorobot ise merkezi bir bilgisayar tarafından kontrol edilen bir nanorobot sürüsünün tekbir elemanıdır. Nanorobotların özellikle tıpta önemli uygulamaları olacaktır. Örneğin kendini yenileyebilenbir grup böcek nanorobot bir hastalığın aşısı olarak davranabilir. Hastalığı oluşturan mikroorganizmalarıtanıyıp yok etmek ile görevli bu nanorobotlar ile daha önce tedavisi olmayan hastalıklara çözümbulunması beklenmektedir.

Dünyada Nano Teknoloji

Nano teknoloji, dünyada hız kesmeden endüstriyle birleştiriliyor ve katlanarak da artacağa benziyor.Dünya teknoloji devleri, nano teknolojik ürünlerini çeşitli fuarda tanıtıyor ve yeni üretim teknolojileri hakkında çeşitli bilimsel konferanslara katılıyorlar.

Malum, klasik üretim teknikleri, nano teknolojinin geliştirilmesi konusunda pek esnek değil.Nano teknolojinin üretimle birleştirilmesi, teknolojiden çok daha fazla verim alınabilmesi, büyük bir oranda yeni tekniklere de bağlı.

Dünya devleri, maddeleri atomik, moleküler boyutda incelemek ve maddelere yeni yetenekler kazandırmanın uanında, bu teknolojinin üretime nasıl geçirileceği konusunda da büyük bütçeler harcamaktadır.

Amerika Birleşik Devletleri, yaptığı açıklamada 2006 yılında üretilen ürünlerden 200 milyar dolar gelir elde edileceğini ve gelecek on yıl içinde de nano teknoloji kullanılarak üretilen ürünlerden 1 trilyon ABD dolarında küresel bir pazar oluşturacağını açıklamıştı.

ABD, nano teknoloji konusunda üniversitelerinde 40 farklı program açmıştır.

Gelin nano teknoloji konusunda araştırma yapan devletlere yakından göz atalım.

AB – Avrupa Birliği

Avrupa Birliği’nin 1994 ve 1998 yılları arasında yürütmüş olduğu 4. Çerçeve programı kapsamında nanoteknoloji alanında araştırma yapan yaklaşık 80 firma desteklenmiş, 1998 ve 2002 yıllarını kapsayan 5. Çerçeve programı kapsamında ise bu alana yapılan destek miktarı yıllık 45 milyon euro civarında olmuştur. Geniş bir yelpazede yapılan destekler arasında nano-elektronik cihazlar, karbon nanotüpler, bio-sensörler, moleküler tanımlama sistemleri, nano-kompozit malzemeler ve yeni mikroskop teknolojileri öne çıkmaktadır.

Asya

Asya ülkeleri içinde nanoteknolojiye yatırım yapan ülkelerin başında Japonya gelmektedir. Japonya dünyada ABD’den sonra nanoteknoloji alanında en fazla Ar-Ge harcaması yapan ikinci ülke konumundadır. Nanoteknoloji üzerine yapılmakta olan yatırımın her yıl %15 ile %20 oranında artmakta olduğu Japonya’da nanoteknoloji tanımı dünyanın geri kalan ülkelerine oranla çok daha geniş kapsamlıdır. Moleküler seviyede yapılan bir çok araştırma (örnek vermek gerekirse, DNA üzerine yapılan araştırmalar) nanoteknoloji tanımı içerisinde yer almaktadır. Ayrıca NEC ve Sumitomo gibi firmalar carbon nanotüpler alanında çalışmalar yürütmekte, araştırmalar gerçekleştirmektedir.

Asya ülkeleri arasında Japonya’yı takip eden ülkeler arasında Çin ve Kore öne çıkmaktadır. Çin ülkede yürütülen nanoteknoloji odaklı bir çok araştırma ve geliştirme çalışmasını Çin Bilimler Akademisi kanalıyla yürütmektedir. Bu ülkede yürütülen çalışmaların bir çoğu yarı iletken üretme teknikleri ve nanoteknoloji tabanlı elektronik cihazlar üzerine yoğunlaşmaktadır. Araştırma merkezlerine ek olarak nanoteknoloji kullanılarak üretilen ürünlerin ticarileşmesine imkan sağlamak amacıyla çalışan bir çok kuruluş bulunmaktadır.

Kore nanoteknolojinin mikro elektronik uygulamaları alanında yoğunlaşmıştır. Nanoteknoloji çalışmalarının sürüdürüldüğü bir çok üniversite ve araştırma merkezi olduğu gibi Kore’nin en büyük şirketlerinden biri olan Samsung mikro elektronik uygulamalar ve mikro elektromekanik sistemler (MEMS) üzerine araştırmalar yürütmektedir.

Tayvan, Singapur, Tayland Hindistan ve Vietnam nanoteknolojiyi öncelikli alan olarak belirlemiş ve uygun çerçeveyi belirlemek için adımlar atmaktadır.

Amerika Birleşik Devletleri

Amerika Birleşik Devletleri’nde 1999 yılında yayınlanan ulusal nanoteknoloji bildirgesi ile ülkenin nano teknoloji alanındaki öncelikleri belirlenmiş ve bu konuda yapılan Ar-Ge çalışmaları için bütçeler ayrılmıştır. 2000 yılında nanoteknoloji alanında yapılan Ar-Ge çalışmalarına hükümet tarafından sağlanan destek 420 milyon dolar civarında iken 2001 yılı bütçesinde bu alana ayrılan pay yaklaşık 520 milyon dolar’a ulaşmış, 2003 yılı için ise yaklaşık 700 milyon dolar olarak belirlenmiştir.

Aralık 2003 tarihinde Başkan Bush 2005 yılından başlayarak 4 yıl süreyle nanoteknoloji alanında gerçekleştirilen araştırma ve geliştirme projelerinde kullanılmak üzere 3.7 milyar dolar tutarında fon ayrılmasını onaylamıştır. Amerika Birleşik Devletleri’nde yürütülen çalışmalar, nano yapılı malzemeler, moleküler elektronik, nanoparçalar, biosensörler ve bioenformatik, quantum bilgisayarlar, ölçüm ve standart geliştirme çalışmaları, nano ölçekte teori, modelleme ve simulasyon, nano robotlar gibi alanlarda yoğunlaşmıştır. Bu çalışmalar Ticaret Departmanı (DOC), Savunma Departmanı (DOD), Enerji Departmanı (DOE), Ulaşım Departmanı (DOT), NASA, Ulusal Sağlık Enstitüsü (NIH) ve Ulusal Bilim Kurumu (NSF) gibi kurumlar tarafından desteklenmektedir.

ABD’de nanoteknoloji üzerine kurulan firmaların sayısı 2002 yılında bir önceki yıla oranla iki kat artmıştır ve bu eğilimin 2004 yılında da tekrar etmesi beklenmektedir.

Bakteriyofaj Nedir?

İnsanlığın en ölümcül düşmanlarından biri tarih boyunca bakteriler olmuştur. Bu savaşta, bakterilerin en büyük düşmanı olan, dünyanın en ölümcül varlığı ünvanına sahip bakteriyofajlar, dostumuz haline gelebilir.

Bakteriyofajlar, sadece belli bakteri türlerini hedef alan virüs türleri. Diğer her virüs gibi bakteriyofajlar da canlı değiller ve çoğalabilmek için canlı hücrelere ihtiyaç duyuyorlar. Bu hücreler de kendileri için bakterilerin ta kendisi.


Her bakteriyofaj, tek bir bakteriye göre özelleşmiş oluyor. Nadir durumlarda özelleştikleri bakteriye çok benzer olan diğer bakteri türlerini de etkileyebilen fajlar, insanlara hiçbir zarar vermiyor. Hatta siz bu yazıyı okurken bile vücudunuzda ve çevrenizde trilyonlarca faj, öylece süzülüyor. Her gün, okyanuslardaki bakterilerin %40’ı bu fajlar tarafından öldürülüyor.

Bakteriyofajlar, özelleştikleri bakteri türleriyle karşılaştıklarında, bu bakterilere tutunuyor ve sahip oldukları genetik materyalleri bakterinin içerisine aktarıyor. Bu genetik materyaller bakterinin kontrol mekanizmasını ele geçiriyor ve sahip olduğu tüm kaynakları virüsü çoğaltmak için kullanıyor. Yeni üretilen virüsler, hücrede kaynak kalmadığında bir enzim salgılıyor ve hücrenin patlamasını sağlıyor. Hücrenin patlamasıyla özgür olan bu yeni virüsler, yeni kurbanlarına denk gelene denk öylece süzülmeye devam ediyorlar.

Şimdi fajları bir kenara bırakıp, bakterilere odaklanalım. 20. yüzyılda şans eseri penisilini keşfedene dek, bakteriler insanlar için oldukça ölümcüldü. Talihsiz bir enfeksiyon sonucunda ölüp gitmek, çok yüksek ihtimaldi. Fakat ilk antibiyotik olan penisilinin keşfi diğer pek çok antibiyotiğin de önünü açtı ve bakteriler birdenbire insanlar için kolay lokma haline geldi.

Her şey çok güzel gitse de, günümüze yaklaştıkça çok ciddi bir problemle karşı karşıya kalmaya başladık. Bakteriler, sadece 100 yıl içerisinde bu yeni taktiğimizi alt etmeye başladılar. Birçok bakteri türü antibiyotiklere dirençli hale gelmeye başladı. Öyle ki, yüzlerce antibiyotiğe karşı hayatta kalmaya devam edip can almaya bile başladılar. Günümüzde sadece ABD’de, her sene 23 bin kişi bu dirençli bakteriler nedeniyle ölüyor ve bu sayı giderek artmaya devam ediyor.

Özetle bu savaşta, bakteriler aradaki puan farkını kapatmaya başlamış durumda. İşte fajlar, tam da bu noktada devreye giriyor. Antibiyotiklere karşı umursamaz olan en güçlü bakteriler bile, kendilerine göre özelleşmiş olan fajlarla karşı karşıya gelince süt dökmüş kediye dönüyor ve kendini savunamadan ölüp gidiyor. Hatta geçtiğimiz yıllarda, Tom Patterson adlı bir hasta, vücudu yüzlerce antibiyotiğe tepki vermedikten sonra, faj entekte edilmesiyle birlikte hastalığından bir iki hafta içerisinde kurtuldu.

Faj tedavisi hala dünyaca ünlü sağlık kuruluşları tarafından onaylanmış değil; fakat bunun nedeni konuya ekstra dikkatli yaklaşılması. Fajlar hakkındaki çalışmalar son yıllarda iyice hızlanmış durumda ve bu konuda birkaç büyük proje devam ediyor. Fajlar insanlara karşı tamamen zararsız olduğu için, tedavi bizler için hiçbir tehlike içermiyor.

Peki bakteriler,  bu fajlara karşı da evrimleşebilir mi? Evet; ancak fajlar da evrimleşebilen varlıklar. Zaten günümüzde hala bakterilerin %40’ını tek başlarına yok ediyor olabilmeleri bunun en büyük kanıtı.

Faj tedavisinin bir diğer avantajı da, antibiyotiklerin aksine vücudumuzdaki iyi bakterileri de yok etmemesi. Bunun nedeni de tek bir bakteri türüne odaklı olmaları.

Özetle fajlar, kedi ve köpekler kadar olmasa da, gelecekte çok büyük dostlarımız haline gelebilirler.

Alıntı | webtekno.com |

Güneş Sistemi’nin sınırında bir nesne keşfedildi.

Bilim insanları, güneş sistemimizin sınırlarında gezinen büyük bir nesne keşfetti.

Bilim insanlarının keşfettiği bu nesne, Güneş Sistemi’nin erken dönemlerine ait olabilir ve gezegenlerin bugünkü formuna nasıl kavuştuğuna açıklık getirebilir.

Solar system, illustration

Bilim insanları, çok uzak olmaları ve radyasyondan etkilenmemiş olmaları dolayısıyla bu nesnenin erken güneş sisteminin kalıntısı olabileceğini düşünüyor. Keşfedilen bu nesne sayesinde araştırmacılar, güneş sisteminin bugünkü formunu kazanmadan önce nasıl göründüğünü tespit edebilir.

Isı Algılayıcı Kameralardan Gizleme Yöntemi

Bir nesneyi ısı algılayıcı kameralardan gizlemek, askeri ve teknoloji uygulamaları için olduğu kadar araştırma için de faydalı olabilir. Bu tür bir yöntemi geliştirme çabaları, değişik derecelerde başarı ile on yıllardır devam etmektedir.

Bir nesne ve çevresi arasındaki sıcaklık farkını maskelemek için önceki birkaç sistem geliştirilmiştir. Ancak, bu alternatiflerin her biri, cihazları yapmada güçlük, güç kaynağına ihtiyaç duyma, sert malzemelerin kullanımı veya ısı birikmesine neden olabilecek kalın ve ağır termal battaniyelerin eklenmesi gibi zayıf yönlere sahiptir. 

Araştırmacılar elyaflardan yapılmış bir aerojel filmi ürettiler. Kendi başına, aerojel, iyi bir ısı yalıtkanı olduğunu ortaya çıkardılar, ancak araştırmacılar, liflerini polietilen glikol (PEG) ve koruyucu bir su geçirmez tabaka ile kaplayarak yeteneklerini arttırdı. PEG eridiğinde ısı depolar ve katılaşınca ısıyı serbest bırakır. Simüle edilmiş güneş ışığında, bir nesneyi kaplayan kompozit film, güneş ışığından ısınırken, yalnızca çevre gibi sıcaklık derecelerinde yavaşça artar ve nesneyi termal bir kamerada görünmez hale getirir.

Sıcak bir nesne, bir aerojel filmine, polietilen glikol eklenerek kızılötesi tespitten tamamen gizlenebilir.